Related
I'm working on an exercise which requires me to implement isPrime in scala using tail recursion. I do have an implementation however, I'm having issues with producing the right base case.
So my algorithm involves checking all numbers from 2 to N/2, since N/2 would be the largest factor of N.
def isPrime(n: Int): Boolean = {
def isPrimeUntil(t: Int): Boolean = {
if(t == 2) true
else n % t != 0 && isPrimeUntil(t - 1)
}
isPrimeUntil(n/2)
}
So basically if I want to check if 15 is a prime I will check all numbers from 7 to 2.
Here is my trace:
isPrimeUntil(7) -> true && isPrimeUntil(6)
-> true && isPrimeUntil(5)
-> false && isPrimeUntil(4)
Because of short-circuit evaluation, the function returns false at this point.
However, my implementation fails for the basic case of checking if 3 is prime.
3 isn't your only problem. It also returns true for 4 ...
Your base case should be 1, not 2:
def isPrimeUntil(t: Int): Boolean = t == 1 || t > 1 && n%t != 0 && isPrimeUntil(t-1)
Although Krzystof correctly pointed that the source of the problem is integer division, I don't like his solution. I believe that the proper fix is change the test to
if(t <= 2) true
With such check in the case of n = 3 and so n/2 = 1 it will stop without going to t = 0.
Some benefits:
The modified check (t <= 2) on almost any modern hardware is as efficient as the check for (t == 2)
IMHO it better conveys the logic
It is very inefficient way to write (n.toDouble/2).ceil.toInt that way. It's easier and faster to write (n+1)/2 instead of doing 2 conversion (to double and back to int)
It doesn't require an excessive check for all odd n ((n+1)/2 is never the smallest divisor for an odd n where there is a difference between n/2 and ceil(n/2))
Working on project Euler problem (26), and wanting to use an algorithm looking for the prime, p with the largest order of 10 modulo p. Essentially the problem is to look for the denominator which creates the longest repetend in a decimal. After a bunch of wikipedia reading, it looks like the prime described above would fulfill that. But, unfortunately, it looks like taking the very large powers of 10 results in an error. My question then is : is there a way of getting around this error (making the numbers smaller), or should I abandon this strategy and just do long division (with the plan being to focus on the primes).
[of note, in the order_ten method I can get it to run if I limit the powers of 10 to 300 and probably can go a bit long, which goes along with the length of a long]
import math
def prime_seive(limit):
seive_list = [True]*limit
seive_list[0] = seive_list[1] = False
for i in range(2, limit):
if seive_list[i] == True :
n = 2
while i*n < limit :
seive_list[i*n] = False #get rid of multiples
n = n+1
prime_numbers = [i for i,j in enumerate(seive_list) if j == True]
return prime_numbers
def order_ten(n) :
for k in range(1, n) :
if (math.pow(10,k) -1)%n == 0:
return k
primes = prime_seive(1000)
max_order = 0
max_order_d = -1
for x in reversed(primes) :
order = order_ten(x)
if order > max_order :
max_order = order
max_order_d = x
print max_order
print max_order_d
I suspect that the problem is that your numbers get to large when first taking a large power of ten and then computing the value mod n. (For instance If I asked you to compute 10^11 mod 11, you could remark than 10 mod 11 is (-1) and thus 10^11 mod 11 is just (-1)^11 mod 11 ie. -1.)
Maybe you could try programming your own exponentiation routine mod n, something like (in pseudo code)
myPow (int k, int n) {
if (k==0) return 1;
else return ((myPow(k-1,n)*10)%n);
}
This way you never deal with numbers larger than n.
The way it is written you will get a linear complexity in k for computing the power, and thus a quadratic complexity in n for your function order_ten(n). If this is too slow for you could improve the function myPow to use some smart exponentiation.
Let me start with an example -
I have a range of numbers from 1 to 9. And let's say the target number that I want is 29.
In this case the minimum number of operations that are required would be (9*3)+2 = 2 operations. Similarly for 18 the minimum number of operations is 1 (9*2=18).
I can use any of the 4 arithmetic operators - +, -, / and *.
How can I programmatically find out the minimum number of operations required?
Thanks in advance for any help provided.
clarification: integers only, no decimals allowed mid-calculation. i.e. the following is not valid (from comments below): ((9/2) + 1) * 4 == 22
I must admit I didn't think about this thoroughly, but for my purpose it doesn't matter if decimal numbers appear mid-calculation. ((9/2) + 1) * 4 == 22 is valid. Sorry for the confusion.
For the special case where set Y = [1..9] and n > 0:
n <= 9 : 0 operations
n <=18 : 1 operation (+)
otherwise : Remove any divisor found in Y. If this is not enough, do a recursion on the remainder for all offsets -9 .. +9. Offset 0 can be skipped as it has already been tried.
Notice how division is not needed in this case. For other Y this does not hold.
This algorithm is exponential in log(n). The exact analysis is a job for somebody with more knowledge about algebra than I.
For more speed, add pruning to eliminate some of the search for larger numbers.
Sample code:
def findop(n, maxlen=9999):
# Return a short postfix list of numbers and operations
# Simple solution to small numbers
if n<=9: return [n]
if n<=18: return [9,n-9,'+']
# Find direct multiply
x = divlist(n)
if len(x) > 1:
mults = len(x)-1
x[-1:] = findop(x[-1], maxlen-2*mults)
x.extend(['*'] * mults)
return x
shortest = 0
for o in range(1,10) + range(-1,-10,-1):
x = divlist(n-o)
if len(x) == 1: continue
mults = len(x)-1
# We spent len(divlist) + mults + 2 fields for offset.
# The last number is expanded by the recursion, so it doesn't count.
recursion_maxlen = maxlen - len(x) - mults - 2 + 1
if recursion_maxlen < 1: continue
x[-1:] = findop(x[-1], recursion_maxlen)
x.extend(['*'] * mults)
if o > 0:
x.extend([o, '+'])
else:
x.extend([-o, '-'])
if shortest == 0 or len(x) < shortest:
shortest = len(x)
maxlen = shortest - 1
solution = x[:]
if shortest == 0:
# Fake solution, it will be discarded
return '#' * (maxlen+1)
return solution
def divlist(n):
l = []
for d in range(9,1,-1):
while n%d == 0:
l.append(d)
n = n/d
if n>1: l.append(n)
return l
The basic idea is to test all possibilities with k operations, for k starting from 0. Imagine you create a tree of height k that branches for every possible new operation with operand (4*9 branches per level). You need to traverse and evaluate the leaves of the tree for each k before moving to the next k.
I didn't test this pseudo-code:
for every k from 0 to infinity
for every n from 1 to 9
if compute(n,0,k):
return k
boolean compute(n,j,k):
if (j == k):
return (n == target)
else:
for each operator in {+,-,*,/}:
for every i from 1 to 9:
if compute((n operator i),j+1,k):
return true
return false
It doesn't take into account arithmetic operators precedence and braces, that would require some rework.
Really cool question :)
Notice that you can start from the end! From your example (9*3)+2 = 29 is equivalent to saying (29-2)/3=9. That way we can avoid the double loop in cyborg's answer. This suggests the following algorithm for set Y and result r:
nextleaves = {r}
nops = 0
while(true):
nops = nops+1
leaves = nextleaves
nextleaves = {}
for leaf in leaves:
for y in Y:
if (leaf+y) or (leaf-y) or (leaf*y) or (leaf/y) is in X:
return(nops)
else:
add (leaf+y) and (leaf-y) and (leaf*y) and (leaf/y) to nextleaves
This is the basic idea, performance can be certainly be improved, for instance by avoiding "backtracks", such as r+a-a or r*a*b/a.
I guess my idea is similar to the one of Peer Sommerlund:
For big numbers, you advance fast, by multiplication with big ciphers.
Is Y=29 prime? If not, divide it by the maximum divider of (2 to 9).
Else you could subtract a number, to reach a dividable number. 27 is fine, since it is dividable by 9, so
(29-2)/9=3 =>
3*9+2 = 29
So maybe - I didn't think about this to the end: Search the next divisible by 9 number below Y. If you don't reach a number which is a digit, repeat.
The formula is the steps reversed.
(I'll try it for some numbers. :) )
I tried with 2551, which is
echo $((((3*9+4)*9+4)*9+4))
But I didn't test every intermediate result whether it is prime.
But
echo $((8*8*8*5-9))
is 2 operations less. Maybe I can investigate this later.
I'm just doing some University related Diffie-Hellman exercises and tried to use ruby for it.
Sadly, ruby doesn't seem to be able to deal with large exponents:
warning: in a**b, b may be too big
NaN
[...]
Is there any way around it? (e.g. a special math class or something along that line?)
p.s. here is the code in question:
generator = 7789
prime = 1017473
alice_secret = 415492
bob_secret = 725193
puts from_alice_to_bob = (generator**alice_secret) % prime
puts from_bob_to_alice = (generator**bob_secret) % prime
puts bobs_key_calculation = (from_alice_to_bob**bob_secret) % prime
puts alices_key_calculation = (from_bob_to_alice**alice_secret) % prime
You need to do what is called, modular exponentiation.
If you can use the OpenSSL bindings then you can do rapid modular exponentiation in Ruby
puts some_large_int.to_bn.mod_exp(exp,mod)
There's a nice way to compute a^b mod n without getting these huge numbers.
You're going to walk through the exponentiation yourself, taking the modulus at each stage.
There's a trick where you can break it down into a series of powers of two.
Here's a link with an example using it to do RSA, from a course I took a while ago:
Specifically, on the second page, you can see an example:
http://www.math.uwaterloo.ca/~cd2rober/Math135/RSAExample.pdf
More explanation with some sample pseudocode from wikipedia: http://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method
I don't know ruby, but even a bignum-friendly math library is going to struggle to evaluate such an expression the naive way (7789 to the power 415492 has approximately 1.6 million digits).
The way to work out a^b mod p without blowing up is to do the mod ping at every exponentiation - I would guess that the language isn't working this out on its own and therefore must be helped.
I've made some attempts of my own. Exponentiation by squaring works well so far, but same problem with bigNum. such a recursive thing as
def exponentiation(base, exp, y = 1)
if(exp == 0)
return y
end
case exp%2
when 0 then
exp = exp/2
base = (base*base)%##mod
exponentiation(base, exp, y)
when 1 then
y = (base*y)%##mod
exp = exp - 1
exponentiation(base, exp, y)
end
end
however, it would be, as I'm realizing, a terrible idea to rely on ruby's prime class for anything substantial. Ruby uses the Sieve of Eratosthenes for it's prime generator, but even worse, it uses Trial division for gcd's and such....
oh, and ##mod was a class variable, so if you plan on using this yourselves, you might want to add it as a param or something.
I've gotten it to work quite quickly for
puts a.exponentiation(100000000000000, 1222555345678)
numbers in that range.
(using ##mod = 80233)
OK, got the squaring method to work for
a = Mod.new(80233788)
puts a.exponentiation(298989898980988987789898789098767978698745859720452521, 12225553456987474747474744778)
output: 59357797
I think that should be sufficient for any problem you might have in your Crypto course
If you really want to go to BIG modular exponentiation, here is an implementation from the wiki page.
#base expantion number to selected base
def baseExpantion(number, base)
q = number
k = ""
while q > 0 do
a = q % base
q = q / base
k = a.to_s() + k
end
return k
end
#iterative for modular exponentiation
def modular(n, b, m)
x = 1
power = baseExpantion(b, 2) #base two
i = power.size - 1
if power.split("")[i] == "1"
x = x * n
x = x % m
end
while i > 0 do
n *= n
n = n % m
if power.split("")[i-1] == "1"
x *= n
x = x % m
end
i -= 1
end
return x
end
Results, where tested with wolfram alpha
This is inspired by right-to-left binary method example on Wikipedia:
def powmod(base, exponent, modulus)
return modulus==1 ? 0 : begin
result = 1
base = base % modulus
while exponent > 0
result = result*base%modulus if exponent%2 == 1
exponent = exponent >> 1
base = base*base%modulus
end
result
end
end
Well, I have this bit of code that is slowing down the program hugely because it is linear complexity but called a lot of times making the program quadratic complexity. If possible I would like to reduce its computational complexity but otherwise I'll just optimize it where I can. So far I have reduced down to:
def table(n):
a = 1
while 2*a <= n:
if (-a*a)%n == 1: return a
a += 1
Anyone see anything I've missed? Thanks!
EDIT: I forgot to mention: n is always a prime number.
EDIT 2: Here is my new improved program (thank's for all the contributions!):
def table(n):
if n == 2: return 1
if n%4 != 1: return
a1 = n-1
for a in range(1, n//2+1):
if (a*a)%n == a1: return a
EDIT 3: And testing it out in its real context it is much faster! Well this question appears solved but there are many useful answers. I should also say that as well as those above optimizations, I have memoized the function using Python dictionaries...
Ignoring the algorithm for a moment (yes, I know, bad idea), the running time of this can be decreased hugely just by switching from while to for.
for a in range(1, n / 2 + 1)
(Hope this doesn't have an off-by-one error. I'm prone to make these.)
Another thing that I would try is to look if the step width can be incremented.
Take a look at http://modular.fas.harvard.edu/ent/ent_py .
The function sqrtmod does the job if you set a = -1 and p = n.
You missed a small point because the running time of your improved algorithm is still in the order of the square root of n. As long you have only small primes n (let's say less than 2^64), that's ok, and you should probably prefer your implementation to a more complex one.
If the prime n becomes bigger, you might have to switch to an algorithm using a little bit of number theory. To my knowledge, your problem can be solved only with a probabilistic algorithm in time log(n)^3. If I remember correctly, assuming the Riemann hypothesis holds (which most people do), one can show that the running time of the following algorithm (in ruby - sorry, I don't know python) is log(log(n))*log(n)^3:
class Integer
# calculate b to the power of e modulo self
def power(b, e)
raise 'power only defined for integer base' unless b.is_a? Integer
raise 'power only defined for integer exponent' unless e.is_a? Integer
raise 'power is implemented only for positive exponent' if e < 0
return 1 if e.zero?
x = power(b, e>>1)
x *= x
(e & 1).zero? ? x % self : (x*b) % self
end
# Fermat test (probabilistic prime number test)
def prime?(b = 2)
raise "base must be at least 2 in prime?" if b < 2
raise "base must be an integer in prime?" unless b.is_a? Integer
power(b, self >> 1) == 1
end
# find square root of -1 modulo prime
def sqrt_of_minus_one
return 1 if self == 2
return false if (self & 3) != 1
raise 'sqrt_of_minus_one works only for primes' unless prime?
# now just try all numbers (each succeeds with probability 1/2)
2.upto(self) do |b|
e = self >> 1
e >>= 1 while (e & 1).zero?
x = power(b, e)
next if [1, self-1].include? x
loop do
y = (x*x) % self
return x if y == self-1
raise 'sqrt_of_minus_one works only for primes' if y == 1
x = y
end
end
end
end
# find a prime
p = loop do
x = rand(1<<512)
next if (x & 3) != 1
break x if x.prime?
end
puts "%x" % p
puts "%x" % p.sqrt_of_minus_one
The slow part is now finding the prime (which takes approx. log(n)^4 integer operation); finding the square root of -1 takes for 512-bit primes still less than a second.
Consider pre-computing the results and storing them in a file. Nowadays many platforms have a huge disk capacity. Then, obtaining the result will be an O(1) operation.
(Building on Adam's answer.)
Look at the Wikipedia page on quadratic reciprocity:
x^2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4).
Then you can avoid the search of a root precisely for those odd prime n's that are not congruent with 1 modulo 4:
def table(n):
if n == 2: return 1
if n%4 != 1: return None # or raise exception
...
Based off OP's second edit:
def table(n):
if n == 2: return 1
if n%4 != 1: return
mod = 0
a1 = n - 1
for a in xrange(1, a1, 2):
mod += a
while mod >= n: mod -= n
if mod == a1: return a//2 + 1
It looks like you're trying to find the square root of -1 modulo n. Unfortunately, this is not an easy problem, depending on what values of n are input into your function. Depending on n, there might not even be a solution. See Wikipedia for more information on this problem.
Edit 2: Surprisingly, strength-reducing the squaring reduces the time a lot, at least on my Python2.5 installation. (I'm surprised because I thought interpreter overhead was taking most of the time, and this doesn't reduce the count of operations in the inner loop.) Reduces the time from 0.572s to 0.146s for table(1234577).
def table(n):
n1 = n - 1
square = 0
for delta in xrange(1, n, 2):
square += delta
if n <= square: square -= n
if square == n1: return delta // 2 + 1
strager posted the same idea but I think less tightly coded. Again, jug's answer is best.
Original answer: Another trivial coding tweak on top of Konrad Rudolph's:
def table(n):
n1 = n - 1
for a in xrange(1, n // 2 + 1):
if (a*a) % n == n1: return a
Speeds it up measurably on my laptop. (About 25% for table(1234577).)
Edit: I didn't notice the python3.0 tag; but the main change was hoisting part of the calculation out of the loop, not the use of xrange. (Academic since there's a better algorithm.)
Is it possible for you to cache the results?
When you calculate a large n you are given the results for the lower n's almost for free.
One thing that you are doing is repeating the calculation -a*a over and over again.
Create a table of the values once and then do look up in the main loop.
Also although this probably doesn't apply to you because your function name is table but if you call a function that takes time to calculate you should cache the result in a table and just do a table look up if you call it again with the same value. This save you the time of calculating all of the values when you first run but you don't waste time repeating the calculation more than once.
I went through and fixed the Harvard version to make it work with python 3.
http://modular.fas.harvard.edu/ent/ent_py
I made some slight changes to make the results exactly the same as the OP's function. There are two possible answers and I forced it to return the smaller answer.
import timeit
def table(n):
if n == 2: return 1
if n%4 != 1: return
a1=n-1
def inversemod(a, p):
x, y = xgcd(a, p)
return x%p
def xgcd(a, b):
x_sign = 1
if a < 0: a = -a; x_sign = -1
x = 1; y = 0; r = 0; s = 1
while b != 0:
(c, q) = (a%b, a//b)
(a, b, r, s, x, y) = (b, c, x-q*r, y-q*s, r, s)
return (x*x_sign, y)
def mul(x, y):
return ((x[0]*y[0]+a1*y[1]*x[1])%n,(x[0]*y[1]+x[1]*y[0])%n)
def pow(x, nn):
ans = (1,0)
xpow = x
while nn != 0:
if nn%2 != 0:
ans = mul(ans, xpow)
xpow = mul(xpow, xpow)
nn >>= 1
return ans
for z in range(2,n) :
u, v = pow((1,z), a1//2)
if v != 0:
vinv = inversemod(v, n)
if (vinv*vinv)%n == a1:
vinv %= n
if vinv <= n//2:
return vinv
else:
return n-vinv
tt=0
pri = [ 5,13,17,29,37,41,53,61,73,89,97,1234577,5915587277,3267000013,3628273133,2860486313,5463458053,3367900313 ]
for x in pri:
t=timeit.Timer('q=table('+str(x)+')','from __main__ import table')
tt +=t.timeit(number=100)
print("table(",x,")=",table(x))
print('total time=',tt/100)
This version takes about 3ms to run through the test cases above.
For comparison using the prime number 1234577
OP Edit2 745ms
The accepted answer 522ms
The above function 0.2ms