NServiceBus: is this an illusion or a best practice? - microservices

Given an NServiceBus microservice that uses MSMQ, When I deploy few instances of that service into the same machine, Am I scaling out my application?, Am I improving the performance? or one instance is enough. shall I instead have a more powerful machine to handle messages?

No, running multiple instances on a single machine will not make things run faster, it is only making execution less efficient.
However, it might be that a single instance isn't giving you the expected performance even though your system monitoring indicates there are plenty of resources to spend but not used. In that case you might want tweak the configuration of your NServiceBus endpoint by configuration the amount of allowed parallel message execution.
On the following link you see how you can increase the concurrency:
https://docs.particular.net/nservicebus/operations/tuning
You can further scaleout by actually using multiple machines but if all these endpoints share the same central database your network or database server can easily become the bottleneck. If you consider deploying or scaling out your endpoints across multiple machines make sure that any storage solutions are also scaled out for these not to become your bottleneck.
Zero downtime upgrades/deployments
The only reason to have multiple instance on the same box is for example when deploying a new version, you can temporarily run the current and the new version side-by-side to achieve zero downtime deployments.

Related

How to deploy code changes across microservices?

We have 10 instances of same microservice identified via eureka service discovery and calls being routed to them through gateway. We want to deploy code changes across these 10 instances but the code changes should be atomic. Meaning at no point of time, 2 instances be running different code.
The simple strategy could be to bring down 9 of the instances--> deploy changes on them --> bring them up --> bring down remaining one instance and after deployment change, bring it up again.
Is this the ideal strategy to be followed on production environment or are there specific patterns to be followed?
The answers on blogs seems to discuss the microservices pattern but none talk about the scenario when some of the instances have newer code version and others yet to be updated.
The ideal strategy is to spin up a few new instances and start balancing requests to them progressively. The load balancer can do IP address pinning so that starting at a particular point in time, an IP address only gets replies from the new instances.
In ideal production world; your atomic requirement is NOT there... Generally we deploy new code on suppose 10% on servers.. see how it is performing in terms of exceptions, latency numbers ..and if all good we keep increasing this percentage..
But I completely understand for some releases ( for example some DB changes though there is even solution for that but that is for another what if ) or for some scenarios we CANNOT have multiple code bases running. First question to be asked for any deployment is "allowed downtime".
Let us assume u need minimum downtime... then solution is that u deploy on another 10 servers; test them out .. and once all is ok , then point your ELB to new servers.. Note that there will be few minutes downtime here..as we have atomic requirement.

Are service fabric services entirely single-threaded?

I'm trying to get to grips with service fabric and I'm struggling a little bit. Some questions:
are all service fabric service instances single-threaded? I created a stateless web api, one instance, with a method that did a Task.Delay, then returned a string. Two requests to this service were served one after the other, not concurrently. So am I right in thinking then that the number of concurrent requests that can be served is purely a function of the service instance count in the application manifest? Edit Thinking about this, it is probably to do with the set up of OWIN Wep Api. Could it be it is blocking by session? I assumed there is no session by default?
I have long-running operations that I need to perform in service fabric (that can take several hours). Is there a recommended pattern that I can use for this in service fabric? These are currently handled using a storage queue that triggers a webjob. Maybe something with Reliable Queues and a RunAsync loop?
It seems you handled the first part so I will comment on the second part: "long-running operations".
We can see long running operations / workflows being handled far before service fabric came about. For this reason, we can build on the shoulders of giants by looking on the design patterns that software experts have been using for decades. For example, the famous and all inclusive Process Manager. Mind you that this pattern is sometimes an overkill. If it is in your case, just check out the rest of the related patterns in the Enterprise Integration Patterns book (by Gregor Hohpe).
As for the use of reliable collections, those are implementation details when choosing a data structure supporting the chosen design pattern.
I hope that helps
With regards to your second point - It really depends on the nature of your long running task.
Is your long running task the kind of workload that runs on an isolated thread that depends on local OS/VM level resources and eventually comes back with a result (A)? or is it the kind of long running task that goes through stages and builds up a model of the result through a series of persisted state changes (B)?
From what I understand of Service Fabric, it isn't really designed for running long running workloads (A), but more for writing horizontally-scalable, highly-available systems.
If you were absolutely keen on using service fabric (and your kind of workload tends to be more like B than A) I would definitely find a way to break down those long running tasks that could be processed in parallel across the cluster. But even then, there is probably more appropriate technologies designed for this such as Azure Batch?
P.s. If you are going to put a long running process in the RunAsync method, you should design the workload so it is interruptable and its state can be persisted in a way that can be resumed from another node in the cluster
In a stateful service, only the primary replica has write access to
state and thus is generally when the service is performing actual
work. The RunAsync method in a stateful service is executed only when
the stateful service replica is primary. The RunAsync method is
cancelled when a primary replica's role changes away from primary, as
well as during the close and abort events.
P.s.s Long running operations are the devil when trying to write scalable systems. Try and tackle that now and save yourself the future pain if possibe.
To the first point - this is purely a client issue. Chrome saw my requests as indentical and so delayed the 2nd request until the 1st got a response. Varying the parameter of the requests allowed them to be served concurrently.

Continuous deployment with Microsoft Azure

If a worker role or for that matter web roles are continuously serving both long/short running requests. How does continuous delivery work in this case? Obviously pushing a new release in the cloud will abort current active sessions on the servers. What should be the strategy to handle this situation?
Cloud Services have production and staging slots, so you can change it whenever you want. Continuous D or I can be implemented by using Visual Studio Team Services, and i would recommend it - we use that. As you say, it demands to decide when you should switch production and staging slots (for example, we did that when the user load was very low, in our case it was a night, but it can be different in your case). Slots swapping is very fast process and it is (as far as i know) the process of changing settings behind load balancers not physical deployment.
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-continuous-delivery-use-vso/#step6
UPD - i remember testing that, and my experience was that incoming connections were stable (for example, RDP) and outgoing are not. So, i can not guarantee that existing connections will be ended gracefully, but from my experience there were no issues.

CPU bound/stateful distributed system design

I'm working on a web application frontend to a legacy system which involves a lot of CPU bound background processing. The application is also stateful on the server side and the domain objects needs to be held in memory across the entire session as the user operates on it via the web based interface. Think of it as something like a web UI front end to photoshop where each filter can take 20-30 seconds to execute on the server side, so the app still has to interact with the user in real time while they wait.
The main problem is that each instance of the server can only support around 4-8 instances of each "workspace" at once and I need to support a few hundreds of concurrent users at once. I'm going to be building this on Amazon EC2 to make use of the auto scaling functionality. So to summarize, the system is:
A web application frontend to a legacy backend system
task performed are CPU bound
Stateful, most calls will be some sort of RPC, the user will make multiple actions that interact with the stateful objects held in server side memory
Most tasks are semi-realtime, where they have to execute for 20-30 seconds and return the results to the user in the same session
Use amazon aws auto scaling
I'm wondering what is the best way to make a system like this distributed.
Obviously I will need a web server to interact with the browser and then send the cpu-bound tasks from the web server to a bunch of dedicated servers that does the background processing. The question is how to best hook up the 2 tiers together for my specific neeeds.
I've been looking at message Queue systems such as rabbitMQ but these seems to be geared towards one time task where any worker node can simply grab a job form a queue, execute it and forget the state. My needs are a little different since there could be multiple 'tasks' that needs to be 'sticky', for example if step 1 is started in node 1 then step 2 for the same workspace has to go to the same worker process.
Another problem I see is that most worker queue systems seems to be geared towards background tasks that can be processed anytime rather than a system that has to provide user feedback that I'm dealing with.
My question is, is there an off the shelf solution for something like this that will allow me to easily build a system that can scale? Would love to hear your thoughts.
RabbitMQ is has an RPC tutorial. I haven't used this pattern in particular but I am running RabbitMQ on a couple of nodes and it can handle hundreds of connections and millions of messages. With a little work in monitoring you can detect when there is more work to do then you have consumers for. Messages can also timeout so queues won't backup too greatly. To scale out capacity you can create multiple RabbitMQ nodes/clusters. You could have multiple rounds of RPC so that after the first response you include the information required to get second message to the correct destination.
0MQ has this as a basic pattern which will fanout work as needed. I've only played with this but it is simpler to code and possibly simpler to maintain (as it doesn't need a broker, devices can provide one though). This may not handle stickiness by default but it should be possible to write your own routing layer to handle it.
Don't discount HTTP for this as well. When you want request/reply, a strict throughput per backend node, and something that scales well, HTTP is well supported. With AWS you can use their ELB easily in front of an autoscaling group to provide the routing from frontend to backend. ELB supports sticky sessions as well.
I'm a big fan of RabbitMQ but if this is the whole scope then HTTP would work nicely and have fewer moving parts in AWS than the other solutions.

EC2 for handling demand spikes

I'm writing the backend for a mobile app that does some cpu intensive work. We anticipate the app will not have heavy usage most of the time, but will have occasional spikes of high demand. I was thinking what we should do is reserve a couple of 24/7 servers to handle the steady-state of low demand traffic and then add and remove EC2 instances as needed to handle the spikes. The mobile app will first hit a simple load balancing server that does a simple round-robin user distribution among all the available processing servers. The load balancer will handle bringing new EC2 instances up and turning them back off as needed.
Some questions:
I've never written something like this before, does this sound like a good strategy?
What's the best way to handle bringing new EC2 instances up and back down? I was thinking I could just create X instances ahead of time, set them up as needed (install software, etc), and then stop each instance. The load balancer will then start and stop the instances as needed (eg through boto). I think this should be a lot faster and easier than trying to create new instances and install everything through a script or something. Good idea?
One thing I'm concerned about here is the cost of turning EC2 instances off and back on again. I looked at the AWS Usage Report and had difficulty interpreting it. I could see starting a stopped instance being a potentially costly operation. But it seems like since I'm just starting a stopped instance rather than provisioning a new one from scratch it shouldn't be too bad. Does that sound right?
This is a very reasonable strategy. I used it successfully before.
You may want to look at Elastic Load Balancing (ELB) in combination with Auto Scaling. Conceptually the two should solve this exact problem.
Back when I did this around 2010, ELB had some problems with certain types of HTTP requests that prevented us from using it. I understand those issues are resolved.
Since ELB was not an option, we manually launched instances from EBS snapshots as needed and manually added them to an NGinX load balancer. That certainly could have been automated using the AWS APIs, but our peaks were so predictable (end of month) that we just tasked someone to spin up the new instances and didn't get around to automating the task.
When an instance is stopped, I believe the only cost that you pay is for the EBS storage backing the instance and its data. Unless your instances have a huge amount of data associated, the EBS storage charge should be minimal. Perhaps things have changed since I last used AWS, but I would be surprised if this changed much if at all.
First with regards to costs, whether an instance is started from scratch or from a stopped state has no impact on cost. You are billed for the amount of compute units you use over time, period.
Second, what you are looking to do is called autoscaling. What you do is setup up a launch config that specifies an AMI you are going to use (along with any user-data configs you are using, the ELB and availiabilty zones you are going to use, min and max number of instances, etc. You set up a scaling group using that launch config. Then you set up scaling policies to determine what scaling actions are going to be attached to the group. You then attach cloud watch alarms to each of those policies to trigger the scaling actions.
You don't have servers in reserve that you attach to the ELB or anything like that. Everything is based on creating a single AMI that is used as the template for the servers you need.
You should read up on autoscaling at the link below:
http://aws.amazon.com/autoscaling/

Resources