Java 8: iterating across all elements of a Map - java-8

I'm having a validate method that return a boolean.
I'm using invoking this method (Java 7) as follow:
boolean isValid = true;
for (String key: aMap.keySet()) {
isValid &= validate(key, aMap.get(key));
}
I would like to rewrite this code in Java 8.
Java 8 allows iterating across a Map using:
aMap.forEach((k,v) -> validate(k, v));
But this won't work:
aMap.forEach((k,v) -> isValid &= validate(k, v));
Question
How can I rewrite the the Java 7 code into Java 8 to achieve the same result?
Note:
I asked a similar question here . The difference in this post is that I want to iterate this time across all the items of the Map (for the validate method to build a validation report). isValid must return true if no validation error occurred, or false if at least one occurred.

You can use
boolean isValid = aMap.entrySet().stream()
.map(e -> validate(e.getKey(), e.getValue()))
.reduce(true, Boolean::logicalAnd);
as, unlike anyMatch, allMatch, etc, Reduction knows no short-circuiting. However, your requirement of executing all validate method calls suggests that there are side-effects within that method. It’s important to understand that these side effects must be non-interfering, i.e. it should not matter in which order these method calls are made and even concurrent evaluation of multiple elements should not break it.
Even when these requirements are met, it is rather discouraged to have such side-effects in a functional operation. E.g., the next developer looking at your code may say, “hey that looks like we should use allMatch here”…
So I’d stay with the loop. But when processing the associations of a Map, you should not loop over the entrySet(), to perform a lookup for every key, but rather use
boolean isValid = true;
for(Map.Entry<String, ValueType> e: aMap.entrySet())
isValid &= validate(e.getKey(), e.getValue());
Starting with Java 10, you may use
boolean isValid = true;
for(var e: aMap.entrySet()) isValid &= validate(e.getKey(), e.getValue());
eliminating the most annoying syntactical element of that loop.

The issue with aMap.forEach((k,v) -> isValid &= validate(k, v)); is that the variable captured in a lambda expression should be final or effectively final. This is the same for anonymous inner classesin Java.
So, to answer your query, you can convert isValid to a final one element array, like this:
final boolean[] isValid = {true}; and then
aMap.forEach((k,v) -> isValid[0] &= validate(k, v));
You can also probably make it atomic, but that would require more code changes. This solution is much simpler.

Related

Boolean that can only be flipped to true

Is there a name for a data structure (read: boolean) that can only be moved from false to true, and not back to false? Imagine something encapsulated like so:
private var _value = false
def value = _value
def turnOnValue() = value = true
And out of curiosity, are there any platforms that support it natively? This seems like something somebody must have come across before...
You're describing a temporal property of a variable; rather than a data structure as such. The data type is a simple boolean, but it is how it is used that is interesting -- as a sort of 'latch' in time.
That kind of latch property on a boolean data type would make it an example of a linearly typed boolean. Linear types, and other kinds of uniqueness types are used to enforce temporal properties of variables -- e.g. that they can only be used once; or cannot be shared.
They're useful for enforcing at compile time that an action has happened (e.g. initialization) or having a compile-time proof that an object is not shared. Thus, they're most common in systems programming, where proofs of low level properties of this are key to correct software design.
In perl you have Tie Variables and you can build your on scalar value and make this kind of "type". But natively... maybe in Smalltalk can be possible to build something like this, or Prolog, but I don't know.
Make your own data type
public final class CustomBoolean {
private boolean value;
public void setValue(boolean value){
// Bitwise OR
this.value |= value;
}
public boolean getValue(){
return value;
}
}
Example ::
public static void main (String[] args)
{
CustomBoolean foo = new CustomBoolean();
foo.setValue(false);
System.out.println(foo.getValue());
foo.setValue(true);
System.out.println(foo.getValue());
foo.setValue(false);
System.out.println(foo.getValue());
}
The output would be ::
false
true
true
This means you'll have to call getValue() before doing any explicit boolean operations
ie
if(foo.getValue() && 1 == 1)
The example is written in Java.

JNI - Converting jobject representing Basic Java Objects (Boolean) to native basic types (bool)

I think I managed to fit most of the question in to the title on this one!
I'm pulling back an Object from Java in my native C++ code:
jobject valueObject = env->CallObjectMethod(hashMapObject, hashMapGetMID, keyObject);
It's possible for me to check wether the return object is one of the native types using something like:
jclass boolClass = env->FindClass("java/lang/Boolean");
if(env->IsInstanceOf(valueObject, boolClass) == JNI_TRUE) { }
So, I now have a jobject which I know is a Boolean (note the upper case B) - The question is, what is the most efficient way (considering I already have the jobject in my native code) to convert this to a bool. Typecasting doesn't work which makes sense.
Although the above example is a Boolean I also want to convert Character->char, Short->short, Integer->int, Float->float, Double->double.
(Once i've implemented it I will post an answer to this which does Boolean.booleanValue())
You have two choices.
Option #1 is what you wrote in your self-answer: use the public method defined for each class to extract the primitive value.
Option #2 is faster but not strictly legal: access the internal field directly. For Boolean, that would be Boolean.value. For each primitive box class you have a fieldID for the "value" field, and you just read the field directly. (JNI cheerfully ignores the fact that it's declared private. You can also write to "final" fields and do other stuff that falls into the "really bad idea" category.)
The name of the "value" field is unlikely to change since that would break serialization. So officially this is not recommended, but in practice you can get away with it if you need to.
Either way, you should be caching the jmethodID / jfieldID values, not looking them up every time (the lookups are relatively expensive).
You could also use the less expensive IsSameObject function rather than IsInstanceof, because the box classes are "final". That requires making an extra GetObjectClass call to get valueObject's class, but you only have to do that once before your various comparisons.
BTW, be careful with your use of "char". In your example above you're casting the result of CallCharMethod (a 16-bit UTF-16 value) to a char (an 8-bit value). Remember, char != jchar (unless you're somehow configured for wide chars), long != jlong (unless you're compiling with 64-bit longs).
This is the solution I'm going to use if I get no more input. Hopefully it isn't this difficult but knowing JNI i'm thinking it might be:
if (env->IsInstanceOf(valueObject, boolClass) == JNI_TRUE)
{
jmethodID booleanValueMID = env->GetMethodID(boolClass, "booleanValue", "()Z");
bool booleanValue = (bool) env->CallBooleanMethod(valueObject, booleanValueMID);
addBoolean(key, booleanValue);
}
else if(env->IsInstanceOf(valueObject, charClass) == JNI_TRUE)
{
jmethodID characterValueMID = env->GetMethodID(charClass, "charValue", "()C");
char characterValue = (char) env->CallCharMethod(valueObject, characterValueMID);
addChar (key, characterValue);
}
In general, I write jni for the better performance.
How to gain the better performance ? Using asm, primitive types and few method call.
I suggest that design your method return type can use in c/c++, such as
jint, jlong, jboolean, jbyte and jchar etc.
The redundant function call and convert will make inefficient and unmaintainable implementation.

How to avoid Linq chaining to return null?

I have a problem with code contracts and linq. I managed to narrow the issue to the following code sample. And now I am stuck.
public void SomeMethod()
{
var list = new List<Question>();
if (list.Take(5) == null) { }
// resharper hints that condition can never be true
if (list.ForPerson(12) == null) { }
// resharper does not hint that condition can never be true
}
public static IQueryable<Question> ForPerson(this IQueryable<Question> source, int personId)
{
if(source == null) throw new ArgumentNullException();
return from q in source
where q.PersonId == personId
select q;
}
What is wrong with my linq chain? Why doesn't resharper 'complain' when analyzing the ForPerson call?
EDIT: return type for ForPerson method changed from string to IQueryable, which I meant. (my bad)
Reshaper is correct that the result of a Take or Skip is never null - if there are no items the result is an IEnumerable<Question> which has no elements. I think to do what you want you should check Any.
var query = list.Take(5);
if (!query.Any())
{
// Code here executes only if there were no items in the list.
}
But how does this warning work? Resharper cannot know that the method never returns null from only looking at the method definition, and I assume that it does not reverse engineer the method body to determine that it never returns null. I assume therefore that it has been specially hard-coded with a rule specifying that the .NET methods Skip and Take do not return null.
When you write your own custom methods Reflector can make assumptions about your method behaviour from the interface, but your interface allows it to return null. Therefore it issues no warnings. If it analyzed the method body then it could see that null is impossible and would be able to issue a warning. But analyzing code to determine its possible behaviour is an incredibly difficult task and I doubt that Red Gate are willing to spend the money on solving this problem when they could add more useful features elsewhere with a much lower development cost.
To determine whether a boolean expression can ever return true is called the Boolean satisfiability problem and is an NP-hard problem.
You want Resharper to determine whether general method bodies can ever return null. This is a generalization of the above mentioned NP-hard problem. It's unlikely any tool will ever be able to do this correctly in 100% of cases.
if(source == null) throw new ArgumentNullException();
That's not the code contract way, do you instead mean:
Contract.Require(source != null);

What's the best way to refactor a method that has too many (6+) parameters?

Occasionally I come across methods with an uncomfortable number of parameters. More often than not, they seem to be constructors. It seems like there ought to be a better way, but I can't see what it is.
return new Shniz(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
I've thought of using structs to represent the list of parameters, but that just seems to shift the problem from one place to another, and create another type in the process.
ShnizArgs args = new ShnizArgs(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
return new Shniz(args);
So that doesn't seem like an improvement. So what is the best approach?
I'm going to assume you mean C#. Some of these things apply to other languages, too.
You have several options:
switch from constructor to property setters. This can make code more readable, because it's obvious to the reader which value corresponds to which parameters. Object Initializer syntax makes this look nice. It's also simple to implement, since you can just use auto-generated properties and skip writing the constructors.
class C
{
public string S { get; set; }
public int I { get; set; }
}
new C { S = "hi", I = 3 };
However, you lose immutability, and you lose the ability to ensure that the required values are set before using the object at compile time.
Builder Pattern.
Think about the relationship between string and StringBuilder. You can get this for your own classes. I like to implement it as a nested class, so class C has related class C.Builder. I also like a fluent interface on the builder. Done right, you can get syntax like this:
C c = new C.Builder()
.SetX(4) // SetX is the fluent equivalent to a property setter
.SetY("hello")
.ToC(); // ToC is the builder pattern analog to ToString()
// Modify without breaking immutability
c = c.ToBuilder().SetX(2).ToC();
// Still useful to have a traditional ctor:
c = new C(1, "...");
// And object initializer syntax is still available:
c = new C.Builder { X = 4, Y = "boing" }.ToC();
I have a PowerShell script that lets me generate the builder code to do all this, where the input looks like:
class C {
field I X
field string Y
}
So I can generate at compile time. partial classes let me extend both the main class and the builder without modifying the generated code.
"Introduce Parameter Object" refactoring. See the Refactoring Catalog. The idea is that you take some of the parameters you're passing and put them in to a new type, and then pass an instance of that type instead. If you do this without thinking, you will end up back where you started:
new C(a, b, c, d);
becomes
new C(new D(a, b, c, d));
However, this approach has the greatest potential to make a positive impact on your code. So, continue by following these steps:
Look for subsets of parameters that make sense together. Just mindlessly grouping all parameters of a function together doesn't get you much; the goal is to have groupings that make sense. You'll know you got it right when the name of the new type is obvious.
Look for other places where these values are used together, and use the new type there, too. Chances are, when you've found a good new type for a set of values that you already use all over the place, that new type will make sense in all those places, too.
Look for functionality that is in the existing code, but belongs on the new type.
For example, maybe you see some code that looks like:
bool SpeedIsAcceptable(int minSpeed, int maxSpeed, int currentSpeed)
{
return currentSpeed >= minSpeed & currentSpeed < maxSpeed;
}
You could take the minSpeed and maxSpeed parameters and put them in a new type:
class SpeedRange
{
public int Min;
public int Max;
}
bool SpeedIsAcceptable(SpeedRange sr, int currentSpeed)
{
return currentSpeed >= sr.Min & currentSpeed < sr.Max;
}
This is better, but to really take advantage of the new type, move the comparisons into the new type:
class SpeedRange
{
public int Min;
public int Max;
bool Contains(int speed)
{
return speed >= min & speed < Max;
}
}
bool SpeedIsAcceptable(SpeedRange sr, int currentSpeed)
{
return sr.Contains(currentSpeed);
}
And now we're getting somewhere: the implementation of SpeedIsAcceptable() now says what you mean, and you have a useful, reusable class. (The next obvious step is to make SpeedRange in to Range<Speed>.)
As you can see, Introduce Parameter Object was a good start, but its real value was that it helped us discover a useful type that has been missing from our model.
The best way would be to find ways to group the arguments together. This assumes, and really only works if, you would end up with multiple "groupings" of arguments.
For instance, if you are passing the specification for a rectangle, you can pass x, y, width, and height or you could just pass a rectangle object that contains x, y, width, and height.
Look for things like this when refactoring to clean it up somewhat. If the arguments really can't be combined, start looking at whether you have a violation of the Single Responsibility Principle.
If it's a constructor, particularly if there are multiple overloaded variants, you should look at the Builder pattern:
Foo foo = new Foo()
.configBar(anything)
.configBaz(something, somethingElse)
// and so on
If it's a normal method, you should think about the relationships between the values being passed, and perhaps create a Transfer Object.
The classic answer to this is to use a class to encapsulate some, or all, of the parameters. In theory that sounds great, but I'm the kind of guy who creates classes for concepts that have meaning in the domain, so it's not always easy to apply this advice.
E.g. instead of:
driver.connect(host, user, pass)
You could use
config = new Configuration()
config.setHost(host)
config.setUser(user)
config.setPass(pass)
driver.connect(config)
YMMV
When I see long parameter lists, my first question is whether this function or object is doing too much. Consider:
EverythingInTheWorld earth=new EverythingInTheWorld(firstCustomerId,
lastCustomerId,
orderNumber, productCode, lastFileUpdateDate,
employeeOfTheMonthWinnerForLastMarch,
yearMyHometownWasIncorporated, greatGrandmothersBloodType,
planetName, planetSize, percentWater, ... etc ...);
Of course this example is deliberately ridiculous, but I've seen plenty of real programs with examples only slightly less ridiculous, where one class is used to hold many barely related or unrelated things, apparently just because the same calling program needs both or because the programmer happened to think of both at the same time. Sometimes the easy solution is to just break the class into multiple pieces each of which does its own thing.
Just slightly more complicated is when a class really does need to deal with multiple logical things, like both a customer order and general information about the customer. In these cases, crate a class for customer and a class for order, and let them talk to each other as necessary. So instead of:
Order order=new Order(customerName, customerAddress, customerCity,
customerState, customerZip,
orderNumber, orderType, orderDate, deliveryDate);
We could have:
Customer customer=new Customer(customerName, customerAddress,
customerCity, customerState, customerZip);
Order order=new Order(customer, orderNumber, orderType, orderDate, deliveryDate);
While of course I prefer functions that take just 1 or 2 or 3 parameters, sometimes we have to accept that, realistically, this function takes a bunch, and that the number of itself does not really create complexity. For example:
Employee employee=new Employee(employeeId, firstName, lastName,
socialSecurityNumber,
address, city, state, zip);
Yeah, it's a bunch of fields, but probably all we're going to do with them is save them to a database record or throw them on a screen or some such. There's not really a lot of processing here.
When my parameter lists do get long, I much prefer if I can give the fields different data types. Like when I see a function like:
void updateCustomer(String type, String status,
int lastOrderNumber, int pastDue, int deliveryCode, int birthYear,
int addressCode,
boolean newCustomer, boolean taxExempt, boolean creditWatch,
boolean foo, boolean bar);
And then I see it called with:
updateCustomer("A", "M", 42, 3, 1492, 1969, -7, true, false, false, true, false);
I get concerned. Looking at the call, it's not at all clear what all these cryptic numbers, codes, and flags mean. This is just asking for errors. A programmer might easily get confused about the order of the parameters and accidentally switch two, and if they're the same data type, the compiler would just accept it. I'd much rather have a signature where all these things are enums, so a call passes in things like Type.ACTIVE instead of "A" and CreditWatch.NO instead of "false", etc.
This is quoted from Fowler and Beck book: "Refactoring"
Long Parameter List
In our early programming days we were taught to pass in as parameters everything needed by
a routine. This was understandable because the alternative was global data, and global data is
evil and usually painful. Objects change this situation because if you don't have something
you need, you can always ask another object to get it for you. Thus with objects you don't
pass in everything the method needs; instead you pass enough so that the method can get to
everything it needs. A lot of what a method needs is available on the method's host class. In
object-oriented programs parameter lists tend to be much smaller than in traditional
programs.
This is good because long parameter lists are hard to understand, because they become
inconsistent and difficult to use, and because you are forever changing them as you need
more data. Most changes are removed by passing objects because you are much more likely
to need to make only a couple of requests to get at a new piece of data.
Use Replace Parameter with Method when you can get the data in one parameter by making
a request of an object you already know about. This object might be a field or it might be
another parameter. Use Preserve Whole Object to take a bunch of data gleaned from an
object and replace it with the object itself. If you have several data items with no logical
object, use Introduce Parameter Object.
There is one important exception to making these changes. This is when you explicitly do
not want to create a dependency from the called object to the larger object. In those cases
unpacking data and sending it along as parameters is reasonable, but pay attention to the pain
involved. If the parameter list is too long or changes too often, you need to rethink your
dependency structure.
I don't want to sound like a wise-crack, but you should also check to make sure the data you are passing around really should be passed around: Passing stuff to a constructor (or method for that matter) smells a bit like to little emphasis on the behavior of an object.
Don't get me wrong: Methods and constructors will have a lot of parameters sometimes. But when encountered, do try to consider encapsulating data with behavior instead.
This kind of smell (since we are talking about refactoring, this horrible word seems appropriate...) might also be detected for objects that have a lot (read: any) properties or getters/setters.
If some of the constructor parameters are optional it makes sense to use a builder, which would get the required parameters in the constructor, and have methods for the optional ones, returning the builder, to be used like this:
return new Shniz.Builder(foo, bar).baz(baz).quux(quux).build();
The details of this are described in Effective Java, 2nd Ed., p. 11. For method arguments, the same book (p. 189) describes three approaches for shortening parameter lists:
Break the method into multiple methods that take fewer arguments
Create static helper member classes to represent groups of parameters, i.e. pass a DinoDonkey instead of dino and donkey
If parameters are optional, the builder above can be adopted for methods, defining an object for all parameters, setting the required ones and then calling some execute method on it
You can try to group your parameter into multiples meaningful struct/class (if possible).
I would generally lean towards the structs approach - presumably the majority of these parameters are related in some way and represent the state of some element that is relevant to your method.
If the set of parameters can't be made into a meaningful object, that's probably a sign that Shniz is doing too much, and the refactoring should involve breaking the method down into separate concerns.
I would use the default constructor and property settors. C# 3.0 has some nice syntax to do this automagically.
return new Shniz { Foo = foo,
Bar = bar,
Baz = baz,
Quuz = quux,
Fred = fred,
Wilma = wilma,
Barney = barney,
Dino = dino,
Donkey = donkey
};
The code improvement comes in simplifying the constructor and not having to support multiple methods to support various combinations. The "calling" syntax is still a little "wordy", but not really any worse than calling the property settors manually.
You haven't provided enough information to warrant a good answer. A long parameter list isn't inherently bad.
Shniz(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
could be interpreted as:
void Shniz(int foo, int bar, int baz, int quux, int fred,
int wilma, int barney, int dino, int donkey) { ...
In this case you're far better off to create a class to encapsulate the parameters because you give meaning to the different parameters in a way that the compiler can check as well as visually making the code easier to read. It also makes it easier to read and refactor later.
// old way
Shniz(1,2,3,2,3,2,1,2);
Shniz(1,2,2,3,3,2,1,2);
//versus
ShnizParam p = new ShnizParam { Foo = 1, Bar = 2, Baz = 3 };
Shniz(p);
Alternatively if you had:
void Shniz(Foo foo, Bar bar, Baz baz, Quux quux, Fred fred,
Wilma wilma, Barney barney, Dino dino, Donkey donkey) { ...
This is a far different case because all the objects are different (and aren't likely to be muddled up). Agreed that if all objects are necessary, and they're all different, it makes little sense to create a parameter class.
Additionally, are some parameters optional? Are there method override's (same method name, but different method signatures?) These sorts of details all matter as to what the best answer is.
* A property bag can be useful as well, but not specifically better given that there is no background given.
As you can see, there is more than 1 correct answer to this question. Take your pick.
If you have that many parameters, chances are that the method is doing too much, so address this first by splitting the method into several smaller methods. If you still have too many parameters after this try grouping the arguments or turning some of the parameters into instance members.
Prefer small classes/methods over large. Remember the single responsibility principle.
You can trade complexity for source code lines. If the method itself does too much (Swiss knife) try to halve its tasks by creating another method. If the method is simple only it needs too many parameters then the so called parameter objects are the way to go.
If your language supports it, use named parameters and make as many optional (with reasonable defaults) as possible.
I think the method you described is the way to go. When I find a method with a lot of parameters and/or one that is likely to need more in the future, I usually create a ShnizParams object to pass through, like you describe.
How about not setting it in all at once at the constructors but doing it via properties/setters? I have seen some .NET classes that utilize this approach such as Process class:
Process p = new Process();
p.StartInfo.UseShellExecute = false;
p.StartInfo.CreateNoWindow = true;
p.StartInfo.RedirectStandardOutput = true;
p.StartInfo.RedirectStandardError = true;
p.StartInfo.FileName = "cmd";
p.StartInfo.Arguments = "/c dir";
p.Start();
I concur with the approach of moving the parameters into a parameter object (struct). Rather than just sticking them all in one object though, review if other functions use similar groups of parameters. A paramater object is more valuable if its used with multiple functions where you expect that set of parameters to change consistently across those functions. It may be that you only put some of the parameters into the new parameter object.
Named arguments are a good option (presuming a language which supports them) for disambiguating long (or even short!) parameter lists while also allowing (in the case of constructors) the class's properties to be immutable without imposing a requirement for allowing it to exist in a partially-constructed state.
The other option I would look for in doing this sort of refactor would be groups of related parameters which might be better handled as an independent object. Using the Rectangle class from an earlier answer as an example, the constructor which takes parameters for x, y, height, and width could factor x and y out into a Point object, allowing you to pass three parameters to the Rectangle's constructor. Or go a little further and make it two parameters (UpperLeftPoint, LowerRightPoint), but that would be a more radical refactoring.
It depends on what kind of arguments you have, but if they are a lot of boolean values/options maybe you could use a Flag Enum?
I think that problem is deeply tied to the domain of the problem you're trying to solve with the class.
In some cases, a 7-parameter constructor may indicate a bad class hierarchy: in that case, the helper struct/class suggested above is usually a good approach, but then you also tend to end up with loads of structs which are just property bags and don't do anything useful.
The 8-argument constructor might also indicate that your class is too generic / too all-purpose so it needs a lot of options to be really useful. In that case you can either refactor the class or implement static constructors that hide the real complex constructors: eg. Shniz.NewBaz (foo, bar) could actually call the real constructor passing the right parameters.
One consideration is which of the values would be read-only once the object is created?
Publicly writable properties could perhaps be assigned after construction.
Where ultimately do the values come from? Perhaps some values are truely external where as others are really from some configuration or global data that is maintained by the library.
In this case you could conceal the constructor from external use and provide a Create function for it. The create function takes the truely external values and constructs the object, then uses accessors only avaiable to the library to complete the creation of the object.
It would be really strange to have an object that requires 7 or more parameters to give the object a complete state and all truely being external in nature.
When a clas has a constructor that takes too many arguments, it is usually a sign that it has too many responsibilities. It can probably be broken into separate classes that cooperate to give the same functionalities.
In case you really need that many arguments to a constructor, the Builder pattern can help you. The goal is to still pass all the arguments to the constructor, so its state is initialized from the start and you can still make the class immutable if needed.
See below :
public class Toto {
private final String state0;
private final String state1;
private final String state2;
private final String state3;
public Toto(String arg0, String arg1, String arg2, String arg3) {
this.state0 = arg0;
this.state1 = arg1;
this.state2 = arg2;
this.state3 = arg3;
}
public static class TotoBuilder {
private String arg0;
private String arg1;
private String arg2;
private String arg3;
public TotoBuilder addArg0(String arg) {
this.arg0 = arg;
return this;
}
public TotoBuilder addArg1(String arg) {
this.arg1 = arg;
return this;
}
public TotoBuilder addArg2(String arg) {
this.arg2 = arg;
return this;
}
public TotoBuilder addArg3(String arg) {
this.arg3 = arg;
return this;
}
public Toto newInstance() {
// maybe add some validation ...
return new Toto(this.arg0, this.arg1, this.arg2, this.arg3);
}
}
public static void main(String[] args) {
Toto toto = new TotoBuilder()
.addArg0("0")
.addArg1("1")
.addArg2("2")
.addArg3("3")
.newInstance();
}
}
The short answer is that:
You need to group the related parameters or redesigning our model
Below example, the constructor takes 8 parameters
public Rectangle(
int point1X,
int point1Y,
int point2X,
int point2Y,
int point3X,
int point3Y,
int point4X,
int point4Y) {
this.point1X = point1X;
this.point1Y = point1Y;
this.point2X = point2X;
this.point2Y = point2Y;
this.point3X = point3X;
this.point3Y = point3Y;
this.point4X = point4X;
this.point4Y = point4Y;
}
After grouping the related parameters,
Then, the constructor will take ONLY 4 parameters
public Rectangle(
Point point1,
Point point2,
Point point3,
Point point4) {
this.point1 = point1;
this.point2 = point2;
this.point3 = point3;
this.point4 = point4;
}
public Point(int x, int y) {
this.x = x;
this.y= y;
}
Or even make the constructor smarter,
After redesigning our model
Then, the constructor will take ONLY 2 parameters
public Rectangle(
Point leftLowerPoint,
Point rightUpperPoint) {
this.leftLowerPoint = leftLowerPoint;
this.rightUpperPoint = rightUpperPoint;
}

Which syntax is better for return value?

I've been doing a massive code review and one pattern I notice all over the place is this:
public bool MethodName()
{
bool returnValue = false;
if (expression)
{
// do something
returnValue = MethodCall();
}
else
{
// do something else
returnValue = Expression;
}
return returnValue;
}
This is not how I would have done this I would have just returned the value when I knew what it was. which of these two patterns is more correct?
I stress that the logic always seems to be structured such that the return value is assigned in one plave only and no code is executed after it's assigned.
A lot of people recommend having only one exit point from your methods. The pattern you describe above follows that recommendation.
The main gist of that recommendation is that if ou have to cleanup some memory or state before returning from the method, it's better to have that code in one place only. having multiple exit points leads to either duplication of cleanup code or potential problems due to missing cleanup code at one or more of the exit points.
Of course, if your method is couple of lines long, or doesn't need any cleanup, you could have multiple returns.
I would have used ternary, to reduce control structures...
return expression ? MethodCall() : Expression;
I suspect I will be in the minority but I like the style presented in the example. It is easy to add a log statement and set a breakpoint, IMO. Plus, when used in a consistent way, it seems easier to "pattern match" than having multiple returns.
I'm not sure there is a "correct" answer on this, however.
Some learning institutes and books advocate the single return practice.
Whether it's better or not is subjective.
That looks like a part of a bad OOP design. Perhaps it should be refactored on the higher level than inside of a single method.
Otherwise, I prefer using a ternary operator, like this:
return expression ? MethodCall() : Expression;
It is shorter and more readable.
Return from a method right away in any of these situations:
You've found a boundary condition and need to return a unique or sentinel value: if (node.next = null) return NO_VALUE_FOUND;
A required value/state is false, so the rest of the method does not apply (aka a guard clause). E.g.: if (listeners == null) return null;
The method's purpose is to find and return a specific value, e.g.: if (nodes[i].value == searchValue) return i;
You're in a clause which returns a unique value from the method not used elsewhere in the method: if (userNameFromDb.equals(SUPER_USER)) return getSuperUserAccount();
Otherwise, it is useful to have only one return statement so that it's easier to add debug logging, resource cleanup and follow the logic. I try to handle all the above 4 cases first, if they apply, then declare a variable named result(s) as late as possible and assign values to that as needed.
They both accomplish the same task. Some say that a method should only have one entry and one exit point.
I use this, too. The idea is that resources can be freed in the normal flow of the program. If you jump out of a method at 20 different places, and you need to call cleanUp() before, you'll have to add yet another cleanup method 20 times (or refactor everything)
I guess that the coder has taken the design of defining an object toReturn at the top of the method (e.g., List<Foo> toReturn = new ArrayList<Foo>();) and then populating it during the method call, and somehow decided to apply it to a boolean return type, which is odd.
Could also be a side effect of a coding standard that states that you can't return in the middle of a method body, only at the end.
Even if no code is executed after the return value is assigned now it does not mean that some code will not have to be added later.
It's not the smallest piece of code which could be used but it is very refactoring-friendly.
Delphi forces this pattern by automatically creating a variable called "Result" which will be of the function's return type. Whatever "Result" is when the function exits, is your return value. So there's no "return" keyword at all.
function MethodName : boolean;
begin
Result := False;
if Expression then begin
//do something
Result := MethodCall;
end
else begin
//do something else
Result := Expression;
end;
//possibly more code
end;
The pattern used is verbose - but it's also easier to debug if you want to know the return value without opening the Registers window and checking EAX.

Resources