valid anagram with O(n) time and 1 extra space, not 256 - algorithm

I tried to work out solution for validating anagram with O(n) time , 1 space.
I came up with bitwise approach.
anagram(s,t) to decide if two strings are anagrams or not.
Example
Given s = "abcd", t = "dcab", return true.
Given s = "ab", t = "ab", return true.
Given s = "ab", t = "ac", return false.
time: n , space 256
I've already had 256 space version.
public boolean anagram(String s, String t) {
if(s == null || t == null){
return false;
}
if(s.length() != t.length()){
return false;
}
int n = s.length();
int[] count = new int[256];
for(int i = 0; i < n; i++){
count[s.charAt(i)]++;
count[t.charAt(i)]--;
}
for(int i : count){
if(i != 0){
return false;
}
}
return true;
}
My code with bitwise solution
It cannot pass this test case:
s: "az" , t: "by"
I know my code is wrong, I want to find out O(n) time and 1 space solution, no sorting, it will take O(nlgn) time.
The code below is incorrect.
time: n , space 1
public boolean anagram(String s, String t) {
if(s == null || t == null || s.length() != t.length()){
return false;
}
int n = s.length();
int x = s.charAt(0) ^ t.charAt(0);
for(int i = 1; i < n; i++){
x ^= s.charAt(i);
x ^= t.charAt(i);
}
return x == 0;
}
I'm trying to work out with just 1 extra space.
Maybe there is no way to work it out.

public boolean anagram(String s, String t) {
if(s == null || t == null || s.length() != t.length()){
return false;
}
int[] hash = new int[256];// all have 0 by default
for(int i=s.length()-1;i>=0;--i){
hash[(int)s.charAt(i)]++;
hash[(int)t.charAt(i)]--;
}
for(int i=0;i<256;++i){
if(hash[i] != 0) return false;
}
return true;
}

The efficient way to detect anagrams is to sort their letters and compare the sorted words for equality.
Given the (presumably) short length of the words and the short size of the alphabet, different options are possible (straight selection sort, straight insertion sort, mergesort, counting sort, radix sort, optimized for small sizes).
A possible micro-optimization is to perform both sorts in parallel and conclude as soon as there is a discrepancy between the partially sorted words.

s: "az" , t: "by"
x = a^b = 3;
then x = 3^z = 121;
then y = 121 ^ y = 0; as the ascii value of y is 121.
I think the approach you have to compare words for anagram is not correct. Please revisit.
I would rather use an array with count for all the characters. If you know the string input is just limited to alphabets then use an array of size 26. But if the input could be any character then use the array of size 256.
This way the complexity will remain O(n)time and O(1) space.

Related

Algorithm - find all permutations of string a in string b

Say we have
string a = "abc"
string b = "abcdcabaabccbaa"
Find location of all permutations of a in b. I am trying to find an effective algorithm for this.
Pseudo code:
sort string a // O(a loga)
for windows of length a in b // O(b)?
sort that window of b // O(~a loga)?
compare to a
if equal
save the index
So would this be a correct algorithm? Run time would be around O(aloga + ba loga) ~= O(a loga b)? How efficient would this be? Possibly way to reduce to O(a*b) or better?
sorting is very expensive, and doesn't use the fact you move along b with a sliding window.
I would use a comparison method that is location agnostic (since any permutation is valid) - assign each letter a prime number, and each string will be the multiplication of its letter values.
this way, as you go over b, each step requires just dividing by the letter you remove from he left, and multiplying with the next letter.
You also need to convince yourself that this indeed matches uniquely for each string and covers all permutations - this comes from the uniqueness of prime decomposition. Also note that on larger strings the numbers get big so you may need some library for large numbers
There is no need to hash, you can just count frequencies on your sliding window, and check if it matches. Assuming the size of your alphabet is s, you get a very simple O(s(n + m)) algorithm.
// a = [1 .. m] and b = [1 .. n] are the input
cnta = [1 .. s] array initialized to 0
cntb = [1 .. s] array initialized to 0
// nb_matches = the number of i s.t. cnta[i] = cntb[i]
// thus the current subword = a iff. nb_matches = s
nb_matches = s
for i = 1 to m:
if cntb[a[i]] = 0: nb_matches -= 1
cntb[a[i]] += 1
ans = 0
for i = 1 to n:
if cntb[b[i]] = cnta[b[i]]: nb_matches -= 1
cntb[b[i]] += 1
if nb_matches = s: ans += 1
if cntb[b[i]] = cnta[b[i]]: nb_matches += 1
if i - m + 1 >= 1:
if cntb[b[i - m + 1]] = cnta[b[i - m + 1]]: nb_matches -= 1
cntb[b[i - m + 1]] += 1
if cntb[b[i - m + 1]] = cnta[b[i - m + 1]]: nb_matches += 1
cntb[b[i - m + 1]] -= 1
return ans
Write a function strcount() to count the number of occurrences of character ch in a string or sub-sring str.
Then just pass through the search string.
for(i=0;i<haystacklenN-NeedleN+1;i++)
{
for(j=0;j<needleN;j++)
if(strcount(haystack + i, Nneedle, needle[j]) != strcount(needles, needlesN, needle[j])
break
}
if(j == needleN)
/* found a permuatation */
Below is my solution. The space complexity is just O(a + b), and the running time (if I can calculate correctly..) is O(b*a), as for each character in b, we may do a recursion a levels deep.
md5's answer is a good one and will be faster!!
public class FindPermutations {
public static void main(String[] args) {
System.out.println(numPerms(new String("xacxzaa"),
new String("fxaazxacaaxzoecazxaxaz")));
System.out.println(numPerms(new String("ABCD"),
new String("BACDGABCDA")));
System.out.println(numPerms(new String("AABA"),
new String("AAABABAA")));
// prints 4, then 3, then 3
}
public static int numPerms(final String a, final String b) {
int sum = 0;
for (int i = 0; i < b.length(); i++) {
if (permPresent(a, b.substring(i))) {
sum++;
}
}
return sum;
}
// is a permutation of a present at the start of b?
public static boolean permPresent(final String a, final String b) {
if (a.isEmpty()) {
return true;
}
if (b.isEmpty()) {
return false;
}
final char first = b.charAt(0);
if (a.contains(b.substring(0, 1))) {
// super ugly, but removes first from a
return permPresent(a.substring(0, a.indexOf(first)) + a.substring(a.indexOf(first)+1, a.length()),
b.substring(1));
}
return false;
}
}
For searchability's sake, I arrive on this page afer looking for other solutions to compare mine to, with the problem originating from watching this clip: https://www.hackerrank.com/domains/tutorials/cracking-the-coding-interview. The original problem statement was something like 'find all permutations of s in b'.
Use 2 hash tables and with a sliding window of size = length of smaller string:
int premutations_of_B_in_A(string large, string small) {
unordered_map<char, int> characters_in_large;
unordered_map<char, int> characters_in_small;
int ans = 0;
for (char c : small) {
characters_in_small[c]++;
}
for (int i = 0; i < small.length(); i++) {
characters_in_large[large[i]]++;
ans += (characters_in_small == characters_in_large);
}
for (int i = small.length(); i < large.length(); i++) {
characters_in_large[large[i]]++;
if (characters_in_large[large[i - small.length()]]-- == 1)
characters_in_large.erase(large[i - small.length()]);
ans += (characters_in_small == characters_in_large);
}
return ans;
}
This is almost solution but will help you to count occurrences of permutations of small strings into larger string
made for only lower case chars
This solution having --
Time Complexity - O(L)
where L is length of large input provided to problem, the exact would be to include 26 too for every char present in Large array but by ignoring constant terms, I will solely stand for this.
Space Complexity - O(1)
because 26 is also constant and independent of how large input would be.
int findAllPermutations(string small, string larger) {
int freqSmall[26] = {0};
//window size
int n = small.length();
//to return
int finalAns = 0;
for (char a : small) {
freqSmall[a - 97]++;
}
int freqlarger[26]={0};
int count = 0;
int j = 0;
for (int i = 0; larger[i] != '\0'; i++) {
freqlarger[larger[i] - 97]++;
count++;
if (count == n) {
count = 0;
int i;
for (i = 0; i < 26; i++) {
if (freqlarger[i] != freqSmall[i]) {
break;
}
}
if (i == 26) {
finalAns++;
}
freqlarger[larger[j] - 97]--;
j++;
}
}
return finalAns;
}
int main() {
string s, t;
cin >> s >> t;
cout << findAllPermutations(s, t) << endl;
return 0;
}

minimum reduced string made up of a,b,c [duplicate]

I have a question which asks us to reduce the string as follows.
The input is a string having only A, B or C. Output must be length of
the reduced string
The string can be reduced by the following rules
If any 2 different letters are adjacent, these two letters can be
replaced by the third letter.
Eg ABA -> CA -> B . So final answer is 1 (length of reduced string)
Eg ABCCCCCCC
This doesn't become CCCCCCCC, as it can be reduced alternatively by
ABCCCCCCC->AACCCCCC->ABCCCCC->AACCCC->ABCCC->AACC->ABC->AA
as here length is 2 < (length of CCCCCCCC)
How do you go about this problem?
Thanks a lot!
To make things clear: the question states it wants the minimum length of the reduced string. So in the second example above there are 2 solutions possible, one CCCCCCCC and the other AA. So 2 is the answer as length of AA is 2 which is smaller than the length of CCCCCCCC = 8.
The way this question is phrased, there are only three distinct possibilities:
If the string has only one unique character, the length is the same as the length of the string.
2/3. If the string contains more than one unique character, the length is either 1 or 2, always (based on the layout of the characters).
Edit:
As a way of proof of concept here is some grammar and its extensions:
I should note that although this seems to me a reasonable proof for the fact that the length will reduce to either 1 or 2, I am reasonably sure that determining which of these lengths will result is not as trivial as I originally thought ( you would still have to recurse through all options to find it out)
S : A|B|C|()
S : S^
where () denotes the empty string, and s^ means any combination of the previous [A,B,C,()] characters.
Extended Grammar:
S_1 : AS^|others
S_2 : AAS^|ABS^|ACS^|others
S_3 : AAAS^|
AABS^ => ACS^ => BS^|
AACS^ => ABS^ => CS^|
ABAS^ => ACS^ => BS^|
ABBS^ => CBS^ => AS^|
ABCS^ => CCS^ | AAS^|
ACAS^ => ABS^ => CS^|
ACBS^ => AAS^ | BBS^|
ACCS^ => BCS^ => AS^|
The same thing will happen with extended grammars starting with B, and C (others). The interesting cases are where we have ACB and ABC (three distinct characters in sequence), these cases result in grammars that appear to lead to longer lengths however:
CCS^: CCAS^|CCBS^|CCCS^|
CBS^ => AS^|
CAS^ => BS^|
CCCS^|
AAS^: AAAS^|AABS^|AACS^|
ACS^ => BS^|
ABS^ => CS^|
AAAS^|
BBS^: BBAS^|BBBS^|BBCS^|
BCS^ => AS^|
BAS^ => CS^|
BBBS^|
Recursively they only lead to longer lengths when the remaining string contains their value only. However we have to remember that this case also can be simplified, since if we got to this area with say CCCS^, then we at one point previous had ABC ( or consequently CBA ). If we look back we could have made better decisions:
ABCCS^ => AACS^ => ABS^ => CS^
CBACS^ => CBBS^ => ABS^ => CS^
So in the best case at the end of the string when we make all the correct decisions we end with a remaining string of 1 character followed by 1 more character(since we are at the end). At this time if the character is the same, then we have a length of 2, if it is different, then we can reduce one last time and we end up with a length of 1.
You can generalize the result based on individual character count of string. The algo is as follows,
traverse through the string and get individual char count.
Lets say if
a = no# of a's in given string
b = no# of b's in given string
c = no# of c's in given string
then you can say that, the result will be,
if((a == 0 && b == 0 && c == 0) ||
(a == 0 && b == 0 && c != 0) ||
(a == 0 && b != 0 && c == 0) ||
(a != 0 && b == 0 && c == 0))
{
result = a+b+c;
}
else if(a != 0 && b != 0 && c != 0)
{
if((a%2 == 0 && b%2 == 0 && c%2 == 0) ||
(a%2 == 1 && b%2 == 1 && c%2 == 1))
result = 2;
else
result = 1;
}
else if((a == 0 && b != 0 && c != 0) ||
(a != 0 && b == 0 && c != 0) ||
(a != 0 && b != 0 && c == 0))
{
if(a%2 == 0 && b%2 == 0 && c%2 == 0)
result = 2;
else
result = 1;
}
I'm assuming that you are looking for the length of the shortest possible string that can be obtained after reduction.
A simple solution would be to explore all possibilities in a greedy manner and hope that it does not explode exponentially. I'm gonna write Python pseudocode here because that's easier to comprehend (at least for me ;)):
from collections import deque
def try_reduce(string):
queue = deque([string])
min_length = len(string)
while queue:
string = queue.popleft()
if len(string) < min_length:
min_length = len(string)
for i in xrange(len(string)-1):
substring = string[i:(i+2)]
if substring == "AB" or substring == "BA":
queue.append(string[:i] + "C" + string[(i+2):])
elif substring == "BC" or substring == "CB":
queue.append(string[:i] + "A" + string[(i+2):])
elif substring == "AC" or substring == "CA":
queue.append(string[:i] + "B" + string[(i+2):])
return min_length
I think the basic idea is clear: you take a queue (std::deque should be just fine), add your string into it, and then implement a simple breadth first search in the space of all possible reductions. During the search, you take the first element from the queue, take all possible substrings of it, execute all possible reductions, and push the reduced strings back to the queue. The entire space is explored when the queue becomes empty.
Let's define an automaton with the following rules (K>=0):
Incoming: A B C
Current: --------------------------
<empty> A B C
A(2K+1) A(2K+2) AB AC
A(2K+2) A(2K+3) AAB AAC
AB CA CB ABC
AAB BA ACB BC
ABC CCA AAB AAC
and all rules obtained by permutations of ABC to get the complete definition.
All input strings using a single letter are irreducible. If the input string contains at least two different letters, the final states like AB or AAB can be reduced to a single letter, and the final states like ABC can be reduced to two letters.
In the ABC case, we still have to prove that the input string can't be reduced to a single letter by another reduction sequence.
Compare two characters at a time and replace if both adjacent characters are not same. To get optimal solution, run once from start of the string and once from end of the string. Return the minimum value.
int same(char* s){
int i=0;
for(i=0;i<strlen(s)-1;i++){
if(*(s+i) == *(s+i+1))
continue;
else
return 0;
}
return 1;
}
int reduceb(char* s){
int ret = 0,a_sum=0,i=0;
int len = strlen(s);
while(1){
i=len-1;
while(i>0){
if ((*(s+i)) == (*(s+i-1))){
i--;
continue;
} else {
a_sum = (*(s+i)) + (*(s+i-1));
*(s+i-1) = SUM - a_sum;
*(s+i) = '\0';
len--;
}
i--;
}
if(same(s) == 1){
return strlen(s);
}
}
}
int reducef(char* s){
int ret = 0,a_sum=0,i=0;
int len = strlen(s);
while(1){
i=0;
while(i<len-1){
if ((*(s+i)) == (*(s+i+1))){
i++;
continue;
} else {
a_sum = (*(s+i)) + (*(s+i+1));
*(s+i) = SUM - a_sum;
int j=i+1;
for(j=i+1;j<len;j++)
*(s+j) = *(s+j+1);
len--;
}
i++;
}
if(same(s) == 1){
return strlen(s);
}
}
}
int main(){
int n,i=0,f=0,b=0;
scanf("%d",&n);
int a[n];
while(i<n){
char* str = (char*)malloc(101);
scanf("%s",str);
char* strd = strdup(str);
f = reducef(str);
b = reduceb(strd);
if( f > b)
a[i] = b;
else
a[i] = f;
free(str);
free(strd);
i++;
}
for(i=0;i<n;i++)
printf("%d\n",a[i]);
}
import java.io.*;
import java.util.*;
class StringSim{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
StringTokenizer st = new StringTokenizer(sc.nextLine(), " ");
int N = Integer.parseInt(st.nextToken());
String op = "";
for(int i=0;i<N;i++){
String str = sc.nextLine();
op = op + Count(str) + "\n";
}
System.out.println(op);
}
public static int Count( String str){
int min = Integer.MAX_VALUE;
char pre = str.charAt(0);
boolean allSame = true;
//System.out.println("str :" + str);
if(str.length() == 1){
return 1;
}
int count = 1;
for(int i=1;i<str.length();i++){
//System.out.println("pre: -"+ pre +"- char at "+i+" is : -"+ str.charAt(i)+"-");
if(pre != str.charAt(i)){
allSame = false;
char rep = (char)(('a'+'b'+'c')-(pre+str.charAt(i)));
//System.out.println("rep :" + rep);
if(str.length() == 2)
count = 1;
else if(i==1)
count = Count(rep+str.substring(2,str.length()));
else if(i == str.length()-1)
count = Count(str.substring(0,str.length()-2)+rep);
else
count = Count(str.substring(0,i-1)+rep+str.substring(i+1,str.length()));
if(min>count) min=count;
}else if(allSame){
count++;
//System.out.println("count: " + count);
}
pre = str.charAt(i);
}
//System.out.println("min: " + min);
if(allSame) return count;
return min;
}
}
Wouldn't a good start be to count which letter you have the most of and look for ways to remove it? Keep doing this until we only have one letter. We might have it many times but as long as it is the same we do not care, we are finished.
To avoid getting something like ABCCCCCCC becoming CCCCCCCC.
We remove the most popular letter:
-ABCCCCCCC
-AACCCCCC
-ABCCCCC
-AACCCC
-ABCCC
-AACC
-ABC
-AA
I disagree with the previous poster who states we must have a length of 1 or 2 - what happens if I enter the start string AAA?
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
public class Sample {
private static char[] res = {'a', 'b', 'c'};
private char replacementChar(char a, char b) {
for(char c : res) {
if(c != a && c != b) {
return c;
}
}
throw new IllegalStateException("cannot happen. you must've mucked up the resource");
}
public int processWord(String wordString) {
if(wordString.length() < 2) {
return wordString.length();
}
String wordStringES = reduceFromEnd(reduceFromStart(wordString));
if(wordStringES.length() == 1) {
return 1;
}
String wordStringSE = reduceFromStart(reduceFromEnd(wordString));
if(wordString.length() == 1) {
return 1;
}
int aLen;
if(isReduced(wordStringSE)) {
aLen = wordStringSE.length();
} else {
aLen = processWord(wordStringSE);
}
int bLen;
if(isReduced(wordStringES)) {
bLen = wordStringES.length();
} else {
bLen = processWord(wordStringES);
}
return Math.min(aLen, bLen);
}
private boolean isReduced(String wordString) {
int length = wordString.length();
if(length < 2) {
return true;
}
for(int i = 1; i < length; ++i) {
if(wordString.charAt(i) != wordString.charAt(i - 1)) {
return false;
}
}
return wordString.charAt(0) == wordString.charAt(length - 1);
}
private String reduceFromStart(String theWord) {
if(theWord.length() < 2) {
return theWord;
}
StringBuilder buffer = new StringBuilder();
char[] word = theWord.toCharArray();
char curChar = word[0];
for(int i = 1; i < word.length; ++i) {
if(word[i] != curChar) {
curChar = replacementChar(curChar, word[i]);
if(i + 1 == word.length) {
buffer.append(curChar);
break;
}
} else {
buffer.append(curChar);
if(i + 1 == word.length) {
buffer.append(curChar);
}
}
}
return buffer.toString();
}
private String reduceFromEnd(String theString) {
if(theString.length() < 2) {
return theString;
}
StringBuilder buffer = new StringBuilder(theString);
int length = buffer.length();
while(length > 1) {
char a = buffer.charAt(0);
char b = buffer.charAt(length - 1);
if(a != b) {
buffer.deleteCharAt(length - 1);
buffer.deleteCharAt(0);
buffer.append(replacementChar(a, b));
length -= 1;
} else {
break;
}
}
return buffer.toString();
}
public void go() {
Scanner scanner = new Scanner(System.in);
int numEntries = Integer.parseInt(scanner.nextLine());
List<Integer> counts = new LinkedList<Integer>();
for(int i = 0; i < numEntries; ++i) {
counts.add((processWord(scanner.nextLine())));
}
for(Integer count : counts) {
System.out.println(count);
}
}
public static void main(String[] args) {
Sample solution = new Sample();
solution.go();
}
}
This is greedy approach and traversing the path starts with each possible pair and checking the min length.
import java.io.*;
import java.util.*;
class StringSim{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
StringTokenizer st = new StringTokenizer(sc.nextLine(), " ");
int N = Integer.parseInt(st.nextToken());
String op = "";
for(int i=0;i<N;i++){
String str = sc.nextLine();
op = op + Count(str) + "\n";
}
System.out.println(op);
}
public static int Count( String str){
int min = Integer.MAX_VALUE;
char pre = str.charAt(0);
boolean allSame = true;
//System.out.println("str :" + str);
if(str.length() == 1){
return 1;
}
int count = 1;
for(int i=1;i<str.length();i++){
//System.out.println("pre: -"+ pre +"- char at "+i+" is : -"+ str.charAt(i)+"-");
if(pre != str.charAt(i)){
allSame = false;
char rep = (char)(('a'+'b'+'c')-(pre+str.charAt(i)));
//System.out.println("rep :" + rep);
if(str.length() == 2)
count = 1;
else if(i==1)
count = Count(rep+str.substring(2,str.length()));
else if(i == str.length()-1)
count = Count(str.substring(0,str.length()-2)+rep);
else
count = Count(str.substring(0,i-1)+rep+str.substring(i+1,str.length()));
if(min>count) min=count;
}else if(allSame){
count++;
//System.out.println("count: " + count);
}
pre = str.charAt(i);
}
//System.out.println("min: " + min);
if(allSame) return count;
return min;
}
}
Following NominSim's observations, here is probably an optimal solution that runs in linear time with O(1) space usage. Note that it is only capable of finding the length of the smallest reduction, not the reduced string itself:
def reduce(string):
a = string.count('a')
b = string.count('b')
c = string.count('c')
if ([a,b,c].count(0) >= 2):
return a+b+c
elif (all(v % 2 == 0 for v in [a,b,c]) or all(v % 2 == 1 for v in [a,b,c])):
return 2
else:
return 1
There is some underlying structure that can be used to solve this problem in O(n) time.
The rules given are (most of) the rules defining a mathematical group, in particular the group D_2 also sometimes known as K (for Klein's four group) or V (German for Viergruppe, four group). D_2 is a group with four elements, A, B, C, and 1 (the identity element). One of the realizations of D_2 is the set of symmetries of a rectangular box with three different sides. A, B, and C are 180 degree rotations about each of the axes, and 1 is the identity rotation (no rotation). The group table for D_2 is
|1 A B C
-+-------
1|1 A B C
A|A 1 C B
B|B C 1 A
C|C B A 1
As you can see, the rules correspond to the rules given in the problem, except that the rules involving 1 aren't present in the problem.
Since D_2 is a group, it satisfies a number of rules: closure (the product of any two elements of the group is another element), associativity (meaning (x*y)*z = x*(y*z) for any elements x, y, z; i.e., the order in which strings are reduced doesn't matter), existence of identity (there is an element 1 such that 1*x=x*1=x for any x), and existence of inverse (for any element x, there is an element x^{-1} such that x*x^{-1}=1 and x^{-1}*x=1; in our case, every element is its own inverse).
It's also worth noting that D_2 is commutative, i.e., x*y=y*x for any x,y.
Given any string of elements in D_2, we can reduce to a single element in the group in a greedy fashion. For example, ABCCCCCCC=CCCCCCCC=CCCCCC=CCCC=CC=1. Note that we don't write the element 1 unless it's the only element in the string. Associativity tells us that the order of the operations doesn't matter, e.g., we could have worked from right to left or started in the middle and gotten the same result. Let's try from the right: ABCCCCCCC=ABCCCCC=ABCCC=ABC=AA=1.
The situation of the problem is different because operations involving 1 are not allowed, so we can't just eliminate pairs AA, BB, or CC. However, the situation is not that different. Consider the string ABB. We can't write ABB=A in this case. However, we can eliminate BB in two steps using A: ABB=CB=A. Since order of operation doesn't matter by associativity, we're guaranteed to get the same result. So we can't go straight from ABB to A but we can get the same result by another route.
Such alternate routes are available whenever there are at least two different elements in a string. In particular, in each of ABB, ACC, BAA, BCC, CAA, CBB, AAB, AAC, BBA, BBC, CCA, CCB, we can act as if we have the reduction xx=1 and then drop the 1.
It follows that any string that is not homogeneous (not all the same letter) and has a double-letter substring (AA, BB, or CC) can be reduced by removing the double letter. Strings that contain just two identical letters can't be further reduced (because there is no 1 allowed in the problem), so it seems safe to hypothesize that any non-homogeneous string can be reduced to A, B, C, AA, BB, CC.
We still have to be careful, however, because CCAACC could be turned into CCCC by removing the middle pair AA, but that is not the best we can do: CCAACC=AACC=CC or AA takes us down to a string of length 2.
Another situation we have to be careful of is AABBBB. Here we could eliminate AA to end with BBBB, but it's better to eliminate the middle B's first, then whatever: AABBBB=AABB=AA or BB (both of which are equivalent to 1 in the group, but can't be further reduced in the problem).
There's another interesting situation we could have: AAAABBBB. Blindly eliminating pairs takes us to either AAAA or BBBB, but we could do better: AAAABBBB=AAACBBB=AABBBB=AABB=AA or BB.
The above indicate that eliminating doubles blindly is not necessarily the way to proceed, but nevertheless it was illuminating.
Instead, it seems as if the most important property of a string is non-homogeneity. If the string is homogeneous, stop, there's nothing we can do. Otherwise, identify an operation that preserves the non-homogeneity property if possible. I assert that it is always possible to identify an operation that preserves non-homogeneity if the string is non-homogeneous and of length four or greater.
Proof: if a 4-substring contains two different letters, a third letter can be introduced at a boundary between two different letters, e.g., AABA goes to ACA. Since one or the other of the original letters must be unchanged somewhere within the string, it follows that the result is still non-homogeneous.
Suppose instead we have a 4-substring that has three different elements, say AABC, with the outer two elements different. Then if the middle two elements are different, perform the operation on them; the result is non-homogeneous because the two outermost elements are still different. On the other hand, if the two inner elements are the same, e.g., ABBC, then they have to be different from both outermost elements (otherwise we'd only have two elements in the set of four, not three). In that case, perform either the first or third operation; that leaves either the last two elements different (e.g., ABBC=CBC) or the first two elements different (e.g., ABBC=ABA) so non-homogeneity is preserved.
Finally, consider the case where the first and last elements are the same. Then we have a situation like ABCA. The middle two elements both have to be different from the outer elements, otherwise we'd have only two elements in this case, not three. We can take the first available operation, ABCA=CCA, and non-homogeneity is preserved again.
End of proof.
We have a greedy algorithm to reduce any non-homogeneous string of length 4 or greater: pick the first operation that preserves non-homogeneity; such an operation must exist by the above argument.
We have now reduced to the case where we have a non-homogeneous string of 3 elements. If two are the same, we either have doubles like AAB etc., which we know can be reduced to a single element, or we have two elements with no double like ABA=AC=B which can also be reduced to a single element, or we have three different elements like ABC. There are six permutations, all of which =1 in the group by associativity and commutativity; all of them can be reduced to two elements by any operation; however, they can't possibly be reduced below a homogeneous pair (AA, BB, or CC) since 1 is not allowed in the problem, so we know that's the best we can do in this case.
In summary, if a string is homogeneous, there's nothing we can do; if a string is non-homogeneous and =A in the group, it can be reduced to A in the problem by a greedy algorithm which maintains non-homogeneity at each step; the same if the string =B or =C in the group; finally if a string is non-homogeneous and =1 in the group, it can be reduced by a greedy algorithm which maintains non-homogeneity as long as possible to one of AA, BB or CC. Those are the best we can do by the group properties of the operation.
Program solving the problem:
Now, since we know the possible outcomes, our program can run in O(n) time as follows: if all the letters in the given string are the same, no reduction is possible so just output the length of the string. If the string is non-homogeneous, and is equal to the identity in the group, output the number 2; otherwise output the number 1.
To quickly decide whether an element equals the identity in the group, we use commutativity and associativity as follows: just count the number of A's, B's and C's into the variables a, b, c. Replace a = a mod 2, b = b mod 2, c = c mod 2 because we can eliminate pairs AA, BB, and CC in the group. If none of the resulting a, b, c is equal to 0, we have ABC=1 in the group, so the program should output 2 because a reduction to the identity 1 is not possible. If all three of the resulting a, b, c are equal to 0, we again have the identity (A, B, and C all cancelled themselves out) so we should output 2. Otherwise the string is non-identity and we should output 1.
//C# Coding
using System;
using System.Collections.Generic;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
/*
Keep all the rules in Dictionary object 'rules';
key - find string, value - replace with value
eg: find "AB" , replace with "AA"
*/
Dictionary<string, string> rules = new Dictionary<string, string>();
rules.Add("AB", "AA");
rules.Add("BA", "AA");
rules.Add("CB", "CC");
rules.Add("BC", "CC");
rules.Add("AA", "A");
rules.Add("CC", "C");
// example string
string str = "AABBCCCA";
//output
Console.WriteLine(fnRecurence(rules, str));
Console.Read();
}
//funcation for applying all the rules to the input string value recursivily
static string fnRecurence(Dictionary<string, string> rules,string str)
{
foreach (var rule in rules)
{
if (str.LastIndexOf(rule.Key) >= 0)
{
str = str.Replace(rule.Key, rule.Value);
}
}
if(str.Length >1)
{
int find = 0;
foreach (var rule in rules)
{
if (str.LastIndexOf(rule.Key) >= 0)
{
find = 1;
}
}
if(find == 1)
{
str = fnRecurence(rules, str);
}
else
{
//if not find any exit
find = 0;
str = str;
return str;
}
}
return str;
}
}
}
Here is my C# solution.
public static int StringReduction(string str)
{
if (str.Length == 1)
return 1;
else
{
int prevAns = str.Length;
int newAns = 0;
while (prevAns != newAns)
{
prevAns = newAns;
string ansStr = string.Empty;
int i = 1;
int j = 0;
while (i < str.Length)
{
if (str[i] != str[j])
{
if (str[i] != 'a' && str[j] != 'a')
{
ansStr += 'a';
}
else if (str[i] != 'b' && str[j] != 'b')
{
ansStr += 'b';
}
else if (str[i] != 'c' && str[j] != 'c')
{
ansStr += 'c';
}
i += 2;
j += 2;
}
else
{
ansStr += str[j];
i++;
j++;
}
}
if (j < str.Length)
{
ansStr += str[j];
}
str = ansStr;
newAns = ansStr.Length;
}
return newAns;
}
}
Compare two characters at a time and replace if both adjacent characters are not same. To get optimal solution, run once from start of the string and once from end of the string. Return the minimum value.
Rav solution is :-
int same(char* s){
int i=0;
for(i=0;i<strlen(s)-1;i++){
if(*(s+i) == *(s+i+1))
continue;
else
return 0;
}
return 1;
}
int reduceb(char* s){
int ret = 0,a_sum=0,i=0;
int len = strlen(s);
while(1){
i=len-1;
while(i>0){
if ((*(s+i)) == (*(s+i-1))){
i--;
continue;
} else {
a_sum = (*(s+i)) + (*(s+i-1));
*(s+i-1) = SUM - a_sum;
*(s+i) = '\0';
len--;
}
i--;
}
if(same(s) == 1){
return strlen(s);
}
}
}
int reducef(char* s){
int ret = 0,a_sum=0,i=0;
int len = strlen(s);
while(1){
i=0;
while(i<len-1){
if ((*(s+i)) == (*(s+i+1))){
i++;
continue;
} else {
a_sum = (*(s+i)) + (*(s+i+1));
*(s+i) = SUM - a_sum;
int j=i+1;
for(j=i+1;j<len;j++)
*(s+j) = *(s+j+1);
len--;
}
i++;
}
if(same(s) == 1){
return strlen(s);
}
}
}
int main(){
int n,i=0,f=0,b=0;
scanf("%d",&n);
int a[n];
while(i<n){
char* str = (char*)malloc(101);
scanf("%s",str);
char* strd = strdup(str);
f = reducef(str);
b = reduceb(strd);
if( f > b)
a[i] = b;
else
a[i] = f;
free(str);
free(strd);
i++;
}
for(i=0;i<n;i++)
printf("%d\n",a[i]);
}
#Rav
this code will fail for input "abccaccba".
solution should be only "b"
but this code wont give that. Since i am not getting correct comment place(due to low points or any other reason) so i did it here.
This problem can be solved by greedy approach. Try to find the best position to apply transformation until no transformation exists. The best position is the position with max number of distinct neighbors of the transformed character.
You can solve this using 2 pass.
In the first pass you apply
len = strlen (str) ;
index = 0 ;
flag = 0 ;
/* 1st pass */
for ( i = len-1 ; i > 0 ; i -- ) {
if ( str[i] != str[i-1] ) {
str[i-1] = getChar (str[i], str[i-1]) ;
if (i == 1) {
output1[index++] = str[i-1] ;
flag = 1 ;
break ;
}
}
else output1[index++] = str[i] ;
}
if ( flag == 0 )
output1[index++] = str[i] ;
output1[index] = '\0';
And in the 2nd pass you will apply the same on 'output1' to get the result.
So, One is forward pass another one is backward pass.
int previous = a.charAt(0);
boolean same = true;
int c = 0;
for(int i = 0; i < a.length();++i){
c ^= a.charAt(i)-'a'+1;
if(a.charAt(i) != previous) same = false;
}
if(same) return a.length();
if(c==0) return 2;
else return 1;
import java.util.Scanner;
public class StringReduction {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String str = sc.nextLine();
int length = str.length();
String result = stringReduction(str);
System.out.println(result);
}
private static String stringReduction(String str) {
String result = str.substring(0);
if(str.length()<2){
return str;
}
if(str.length() == 2){
return combine(str.charAt(0),str.charAt(1));
}
for(int i =1;i<str.length();i++){
if(str.charAt(i-1) != str.charAt(i)){
String temp = str.substring(0, i-1) + combine(str.charAt(i-1),str.charAt(i)) + str.substring(i+1, str.length());
String sub = stringReduction(temp);
if(sub.length() < result.length()){
result = sub;
}
}
}
return result;
}
private static String combine(char c1, char c2) {
if(c1 == c2){
return "" + c1 + c2;
}
else{
if(c1 == 'a'){
if(c2 == 'b'){
return "" + 'c';
}
if(c2 == 'c') {
return "" + 'b';
}
}
if(c1 == 'b'){
if(c2 == 'a'){
return "" + 'c';
}
if(c2 == 'c') {
return "" + 'a';
}
}
if(c1 == 'c'){
if(c2 == 'a'){
return "" + 'b';
}
if(c2 == 'b') {
return "" + 'a';
}
}
return null;
}
}
}
JAVASCRIPT SOLUTION:
function StringChallenge(str) {
// code goes here
if(str.length == 1) {
return 1;
} else {
let prevAns = str.length;
let newAns = 0;
while(prevAns != newAns) {
prevAns = newAns;
let ansStr = "";
let i = 1;
let j = 0;
while(i < str.length) {
if(str[i] !== str[j]) {
if(str[i] != 'a' && str[j] != 'a') {
ansStr += 'a';
} else if(str[i] != 'b' && str[j] !='b') {
ansStr +='b';
} else if(str[i] != 'c' && str[j] != 'c') {
ansStr += 'c';
}
i += 2;
j += 2;
} else {
ansStr += str[j];
j++;
i++;
}
}
if(j < str.length) {
ansStr += str[j];
}
str = ansStr;
newAns = ansStr.length;
}
return newAns;
}
}

What's time complexity of this Algorithm for breaking words? (Dynamic Programming)

Word Break(with Dynamic Programming: Top->Down) Given a string s and a dictionary of words dict, add spaces in s to construct a sentence
where each word is a valid dictionary word.
Return all such possible sentences.
For example, given s = "catsanddog", dict = ["cat", "cats", "and", "sand", "dog"].
A solution is ["cats and dog", "cat sand dog"].
Question:
Time complexity ?
Space complexity ?
Personally I think,
Time complexity = O(n!), without Dynamic Programming, n is the length of the given string,
Space complexity = O(n).
The puzzled:
Can not figure out the time complexity with Dynamic Programming.
It seems that the space complexity above is not correct.
Code[Java]
public class Solution {
public List<String> wordBreak(String s, Set<String> dict) {
List<String> list = new ArrayList<String>();
// Input checking.
if (s == null || s.length() == 0 ||
dict == null || dict.size() == 0) return list;
int len = s.length();
// memo[i] is recording,
// whether we cut at index "i", can get one of the result.
boolean memo[] = new boolean[len];
for (int i = 0; i < len; i ++) memo[i] = true;
StringBuilder tmpStrBuilder = new StringBuilder();
helper(s, 0, tmpStrBuilder, dict, list, memo);
return list;
}
private void helper(String s, int start, StringBuilder tmpStrBuilder,
Set<String> dict, List<String> list, boolean[] memo) {
// Base case.
if (start >= s.length()) {
list.add(tmpStrBuilder.toString().trim());
return;
}
int listSizeBeforeRecursion = 0;
for (int i = start; i < s.length(); i ++) {
if (memo[i] == false) continue;
String curr = s.substring(start, i + 1);
if (!dict.contains(curr)) continue;
// Have a try.
tmpStrBuilder.append(curr);
tmpStrBuilder.append(" ");
// Do recursion.
listSizeBeforeRecursion = list.size();
helper(s, i + 1, tmpStrBuilder, dict, list, memo);
if (list.size() == listSizeBeforeRecursion) memo[i] = false;
// Roll back.
tmpStrBuilder.setLength(tmpStrBuilder.length() - curr.length() - 1);
}
}
}
With DP:
Time: O(N*M)
N - string size
M - dict size
Memory: O(N)
See my answer here, with code example:
Dynamic Programming - Word Break
It is dynamic problem.
You can maintain two things.
1 DP[i] means when the string is in ith character, there is dp[i] ways to cut it.
2 vector < int> pre[i] means the previous position can reach the current ith position.(It's size must be DP[i])
Time is O(n*m)
Firstly, i is in [0,n):
then find j in [0,i): that substring(j+1,i) is valid.
The validation can be calculated previously. So the time is O(n*m), and you can use vector < int> pre[i] to get all the cutting solution you want.

Old Top Coder riddle: Making a number by inserting +

I am thinking about this topcoder problem.
Given a string of digits, find the minimum number of additions required for the string to equal some target number. Each addition is the equivalent of inserting a plus sign somewhere into the string of digits. After all plus signs are inserted, evaluate the sum as usual.
For example, consider "303" and a target sum of 6. The best strategy is "3+03".
I would solve it with brute force as follows:
for each i in 0 to 9 // i -- number of plus signs to insert
for each combination c of i from 10
for each pos in c // we can just split the string w/o inserting plus signs
insert plus sign in position pos
evaluate the expression
if the expression value == given sum
return i
Does it make sense? Is it optimal from the performance point of view?
...
Well, now I see that a dynamic programming solution will be more efficient. However it is interesting if the presented solution makes sense anyway.
It's certainly not optimal. If, for example, you are given the string "1234567890" and the target is a three-digit number, you know that you have to split the string into at least four parts, so you need not check 0, 1, or 2 inserts. Also, the target limits the range of admissible insertion positions. Both points have small impact for short strings, but can make a huge difference for longer ones. However, I suspect there's a vastly better method, smells a bit of DP.
I haven't given it much thought yet, but if you scroll down you can see a link to the contest it was from, and from there you can see the solvers' solutions. Here's one in C#.
using System;
using System.Text;
using System.Text.RegularExpressions;
using System.Collections;
public class QuickSums {
public int minSums(string numbers, int sum) {
int[] arr = new int[numbers.Length];
for (int i = 0 ; i < arr.Length; i++)
arr[i] = 0;
int min = 15;
while (arr[arr.Length - 1] != 2)
{
arr[0]++;
for (int i = 0; i < arr.Length - 1; i++)
if (arr[i] == 2)
{
arr[i] = 0;
arr[i + 1]++;
}
String newString = "";
for (int i = 0; i < numbers.Length; i++)
{
newString+=numbers[i];
if (arr[i] == 1)
newString+="+";
}
String[] nums = newString.Split('+');
int sum1 = 0;
for (int i = 0; i < nums.Length; i++)
try
{
sum1 += Int32.Parse(nums[i]);
}
catch
{
}
if (sum == sum1 && nums.Length - 1 < min)
min = nums.Length - 1;
}
if (min == 15)
return -1;
return min;
}
}
Because input length is small (10) all possible ways (which can be found by a simple binary counter of length 10) is small (2^10 = 1024), so your algorithm is fast enough and returns valid result, and IMO there is no need to improve it.
In all until your solution works fine in time and memory and other given constrains, there is no need to do micro optimization. e.g this case as akappa offered can be solved with DP like DP in two-Partition problem, but when your algorithm is fast there is no need to do this and may be adding some big constant or making code unreadable.
I just offer parse digits of string one time (in array of length 10) to prevent from too many string parsing, and just use a*10^k + ... (Also you can calculate 10^k for k=0..9 in startup and save its value).
I think the problem is similar to Matrix Chain Multiplication problem where we have to put braces for least multiplication. Here braces represent '+'. So I think it could be solved by similar dp approach.. Will try to implement it.
dynamic programming :
public class QuickSums {
public static int req(int n, int[] digits, int sum) {
if (n == 0) {
if (sum == 0)
return 0;
else
return -1;
} else if (n == 1) {
if (sum == digits[0]) {
return 0;
} else {
return -1;
}
}
int deg = 1;
int red = 0;
int opt = 100000;
int split = -1;
for (int i=0; i<n;i++) {
red += digits[n-i-1] * deg;
int t = req(n-i-1,digits,sum - red);
if (t != -1 && t <= opt) {
opt = t;
split = i;
}
deg = deg*10;
}
if (opt == 100000)
return -1;
if (split == n-1)
return opt;
else
return opt + 1;
}
public static int solve (String digits,int sum) {
int [] dig = new int[digits.length()];
for (int i=0;i<digits.length();i++) {
dig[i] = digits.charAt(i) - 48;
}
return req(digits.length(), dig, sum);
}
public static void doit() {
String digits = "9230560001";
int sum = 71;
int result = solve(digits, sum);
System.out.println(result);
}
Seems to be too late .. but just read some comments and answers here which say no to dp approach . But it is a very straightforward dp similar to rod-cutting problem:
To get the essence:
int val[N][N];
int dp[N][T];
val[i][j]: numerical value of s[i..j] including both i and j
val[i][j] can be easily computed using dynamic programming approach in O(N^2) time
dp[i][j] : Minimum no of '+' symbols to be inserted in s[0..i] to get the required sum j
dp[i][j] = min( 1+dp[k][j-val[k+1][j]] ) over all k such that 0<=k<=i and val[k][j]>0
In simple terms , to compute dp[i][j] you assume the position k of last '+' symbol and then recur for s[0..k]

Split a string to a string of valid words using Dynamic Programming

I need to find a dynamic programming algorithm to solve this problem. I tried but couldn't figure it out. Here is the problem:
You are given a string of n characters s[1...n], which you believe to be a corrupted text document in which all punctuation has vanished (so that it looks something like "itwasthebestoftimes..."). You wish to reconstruct the document using a dictionary, which is available in the form of a Boolean function dict(*) such that, for any string w, dict(w) has value 1 if w is a valid word, and has value 0 otherwise.
Give a dynamic programming algorithm that determines whether the string s[*] can be reconstituted as a sequence of valid words. The running time should be at most O(n^2), assuming that each call to dict takes unit time.
In the event that the string is valid, make your algorithm output the corresponding sequence of words.
Let the length of your compacted document be N.
Let b(n) be a boolean: true if the document can be split into words starting from position n in the document.
b(N) is true (since the empty string can be split into 0 words).
Given b(N), b(N - 1), ... b(N - k), you can construct b(N - k - 1) by considering all words that start at character N - k - 1. If there's any such word, w, with b(N - k - 1 + len(w)) set, then set b(N - k - 1) to true. If there's no such word, then set b(N - k - 1) to false.
Eventually, you compute b(0) which tells you if the entire document can be split into words.
In pseudo-code:
def try_to_split(doc):
N = len(doc)
b = [False] * (N + 1)
b[N] = True
for i in range(N - 1, -1, -1):
for word starting at position i:
if b[i + len(word)]:
b[i] = True
break
return b
There's some tricks you can do to get 'word starting at position i' efficient, but you're asked for an O(N^2) algorithm, so you can just look up every string starting at i in the dictionary.
To generate the words, you can either modify the above algorithm to store the good words, or just generate it like this:
def generate_words(doc, b, idx=0):
length = 1
while true:
assert b(idx)
if idx == len(doc): return
word = doc[idx: idx + length]
if word in dictionary and b(idx + length):
output(word)
idx += length
length = 1
Here b is the boolean array generated from the first part of the algorithm.
To formalize what #MinhPham suggested.
This is a dynammic programming solution.
Given a string str, let
b[i] = true if the substring str[0...i] (inclusive) can be split into valid words.
Prepend some starting character to str, say !, to represent the empty word.
str = "!" + str
The base case is the empty string, so
b[0] = true.
For the iterative case:
b[j] = true if b[i] == true and str[i..j] is a word for all i < j
The O(N^2) Dp is clear but if you know the words of the dictionary, i think you can use some precomputations to get it even faster in O(N).
Aho-Corasick
A dp solution in c++:
int main()
{
set<string> dict;
dict.insert("12");
dict.insert("123");
dict.insert("234");
dict.insert("12345");
dict.insert("456");
dict.insert("1234");
dict.insert("567");
dict.insert("123342");
dict.insert("42");
dict.insert("245436564");
dict.insert("12334");
string str = "123456712334245436564";
int size = str.size();
vector<int> dp(size+1, -1);
dp[0] = 0;
vector<string > res(size+1);
for(int i = 0; i < size; ++i)
{
if(dp[i] != -1)
{
for(int j = i+1; j <= size; ++j)
{
const int len = j-i;
string substr = str.substr(i, len);
if(dict.find(substr) != dict.end())
{
string space = i?" ":"";
res[i+len] = res[i] + space + substr;
dp[i+len] = dp[i]+1;
}
}
}
}
cout << *dp.rbegin() << endl;
cout << *res.rbegin() << endl;
return 0;
}
The string s[] can potentially be split into more than one ways. The method below finds the maximum number of words in which we can split s[]. Below is the sketch/pseudocode of the algorithm
bestScore[i] -> Stores the maximum number of words in which the first i characters can be split (it would be MINUS_INFINITY otherwise)
for (i = 1 to n){
bestScore[i] = MINUS_INFINITY
for (k = 1 to i-1){
bestScore[i] = Max(bestSCore[i], bestScore[i-k]+ f(i,k))
}
}
Where f(i,k) is defined as:
f(i,k) = 1 : if s[i-k+1 to i] is in dictionary
= MINUS_INFINITY : otherwise
bestScore[n] would store the maximum number of words in which s[] can be split (if the value is MINUS_INFINIY, s[] cannot be split)
Clearly the running time is O(n^2)
As this looks like a textbook exercise, I will not write the code to reconstruct the actual split positions.
Below is an O(n^2) solution for this problem.
void findstringvalid() {
string s = "itwasthebestoftimes";
set<string> dict;
dict.insert("it");
dict.insert("was");
dict.insert("the");
dict.insert("best");
dict.insert("of");
dict.insert("times");
vector<bool> b(s.size() + 1, false);
vector<int> spacepos(s.size(), -1);
//Initialization phase
b[0] = true; //String of size 0 is always a valid string
for (int i = 1; i <= s.size(); i++) {
for (int j = 0; j <i; j++) {
//string of size s[ j... i]
if (!b[i]) {
if (b[j]) {
//check if string "j to i" is in dictionary
string temp = s.substr(j, i - j);
set<string>::iterator it = dict.find(temp);
if (it != dict.end()) {
b[i] = true;
spacepos[i-1] = j;
}
}
}
}
}
if(b[s.size()])
for (int i = 1; i < spacepos.size(); i++) {
if (spacepos[i] != -1) {
string temp = s.substr(spacepos[i], i - spacepos[i] + 1);
cout << temp << " ";
}
}
}

Resources