I would like to use queues dynamically generated in ActiveMQ to serialize the handling of events generated by multiple sources.
I need this to be sure that updates on the same record are never in conflicts.
The problem is that I need a different queue for each set of updates that relate to the same record.
There could be in theory millions of records and, of course, I do not want to create millions of queues.
Ideally, a queue should be created when necessary and destroyed when all the updates are completed.
The events that fire the updates are asynchronous but are still correlated. I know that when something happens, several events will be fired in the same time.
It is practically a small burst of asynchronous but correlated updates.
After some time, the queue generated could be deleted.
I understand that there is a cost in creating and deleting queues, but am I right thinking that the cost of generated and deleting these queues with a rate that, during a peak, won't be higher than a few queues per seconds, won't create performance issues ?
There is a cost of temporary queues but generally not that high unless you have high network latency between app server and broker and you should be fine.
Temporary queues, though, have some limits. Such as they are deleted once the created connection goes down. So, if you want your job to resume after a system restart, don't depend on temp-queues. I advice against dynamically creating regular queues at multiple/sec rate. The system is not designed for that.
Generally what you want to do while processing a group of related messages is to utilize message groups. That way, you can use a single queue that does not depend on the producer/temp queue creator connection.
Related
What's the best way to provide real-time monitoring of the total count of messages sent to an SQS queue?
I currently have a Grafana dashboard set up to monitor an SQS queue, but it seems to refresh about every two minutes. I'm looking to get something set up to update almost in real-time, e.g. refresh every second.
The queue I'm using consumes around 6,000 messages per minute.
Colleagues of mine have built something for real-time monitoring of uploads to an S3 bucket, using a lambda to populate a PostgreSQL DB and using Grafana to query this.
Is this the best way of achieving this? Is there a more efficient way?
SQS is not event driven - it must be polled. Therefore, there isn't an event each time a message is put into the queue or removed from it. With S3 to Lambda there is an event sent in pretty much real time every time an object has been created or removed.
You can change the polling interval for SQS and poll as fast as you'd like. But be aware that polling does have a cost. The first 1 million requests a month are free.
I'm not sure what you're trying to accomplish (I'll address after my idea), but there's certainly a couple ways you could accomplish this. Each has positive and negative.
In every place you produce or consume messages, increment or decrement a cloudwatch metric (or datadog, librato, etc). It's still polling-based, but you could get the granularity down (even by using Cloudwatch) to 15-60 seconds. The biggest problem here is that it's error prone (what happens if the SQS message times out and gets reprocessed?).
Create a secondary queue. Each message that goes into this queue is either a "add" or "delete" message. Attach a lambda, container, autoscale group to process the queue and update metrics in an RDS or DynamoDB table. Query the table as needed.
Use a different queue processing system instead of SQS. I've seen RabbitMQ and Sensu used in very large environments, they will easily handle 6,000 messages per minute.
Keep in mind, there are a lot more metrics than just number of messages in the queue. I've recently become really fond of ApproximateAgeOfOldestMessage, because it indicates whether messages are being processed without error. Here's a blog post about the most helpful SQS metrics. It's called How to Monitor Amazon SQS with CloudWatch
Since a couple of days I've been trying to figure it out how to inform to the rest of the microservices that a new entity was created in a microservice A that store that entity in a MongoDB.
I want to:
Have low coupling between the microservices
Avoid distributed transactions between microservices like Two Phase Commit (2PC)
At first a message broker like RabbitMQ seems to be a good tool for the job but then I see the problem of commit the new document in MongoDB and publish the message in the broker not being atomic.
Why event sourcing? by eventuate.io:
One way of solving this issue implies make the schema of the documents a bit dirtier by adding a mark that says if the document have been published in the broker and having a scheduled background process that search unpublished documents in MongoDB and publishes those to the broker using confirmations, when the confirmation arrives the document will be marked as published (using at-least-once and idempotency semantics). This solutions is proposed in this and this answers.
Reading an Introduction to Microservices by Chris Richardson I ended up in this great presentation of Developing functional domain models with event sourcing where one of the slides asked:
How to atomically update the database and publish events and publish events without 2PC? (dual write problem).
The answer is simple (on the next slide)
Update the database and publish events
This is a different approach to this one that is based on CQRS a la Greg Young.
The domain repository is responsible for publishing the events, this
would normally be inside a single transaction together with storing
the events in the event store.
I think that delegate the responsabilities of storing and publishing the events to the event store is a good thing because avoids the need of 2PC or a background process.
However, in a certain way it's true that:
If you rely on the event store to publish the events you'd have a
tight coupling to the storage mechanism.
But we could say the same if we adopt a message broker for intecommunicate the microservices.
The thing that worries me more is that the Event Store seems to become a Single Point of Failure.
If we look this example from eventuate.io
we can see that if the event store is down, we can't create accounts or money transfers, losing one of the advantages of microservices. (although the system will continue responding querys).
So, it's correct to affirmate that the Event Store as used in the eventuate example is a Single Point of Failure?
What you are facing is an instance of the Two General's Problem. Basically, you want to have two entities on a network agreeing on something but the network is not fail safe. Leslie Lamport proved that this is impossible.
So no matter how much you add new entities to your network, the message queue being one, you will never have 100% certainty that agreement will be reached. In fact, the opposite takes place: the more entities you add to your distributed system, the less you can be certain that an agreement will eventually be reached.
A practical answer to your case is that 2PC is not that bad if you consider adding even more complexity and single points of failures. If you absolutely do not want a single point of failure and wants to assume that the network is reliable (in other words, that the network itself cannot be a single point of failure), you can try a P2P algorithm such as DHT, but for two peers I bet it reduces to simple 2PC.
We handle this with the Outbox approach in NServiceBus:
http://docs.particular.net/nservicebus/outbox/
This approach requires that the initial trigger for the whole operation came in as a message on the queue but works very well.
You could also create a flag for each entry inside of the event store which tells if this event was already published. Another process could poll the event store for those unpublished events and put them into a message queue or topic. The disadvantage of this approach is that consumers of this queue or topic must be designed to de-duplicate incoming messages because this pattern does only guarantee at-least-once delivery. Another disadvantage could be latency because of the polling frequency. But since we have already entered the eventually consistent area here this might not be such a big concern.
How about if we have two event stores, and whenever a Domain Event is created, it is queued onto both of them. And the event handler on the query side, handles events popped from both the event stores.
Ofcourse every event should be idempotent.
But wouldn’t this solve our problem of the event store being a single point of entry?
Not particularly a mongodb solution but have you considered leveraging the Streams feature introduced in Redis 5 to implement a reliable event store. Take a look this intro here
I find that it has rich set of features like message tailing, message acknowledgement as well as the ability to extract unacknowledged messages easily. This surely helps to implement at least once messaging guarantees. It also support load balancing of messages using "consumer group" concept which can help with scaling the processing part.
Regarding your concern about being the single point of failure, as per the documentation, streams and consumer information can be replicated across nodes and persisted to disk (using regular Redis mechanisms I believe). This helps address the single point of failure issue. I'm currently considering using this for one of my microservices projects.
I want a bunch of several hundred client apps to create and use temporary queues at one instance of the middleware.
Are there some cons regarding performance why I shouldn't use temp queues? Are there limitations, for example on how many temp. queues can be created per HornetQ instance?
On a recent project we have switched from using temporary queues to using static queues on SonicMQ. We had implemented synchronous service calls over JMS where the response of each call would be delivered on a dedicated temporary queue, created by the consumer. During stress testing we noticed that the overhead of temporary queue creation and allocated resources started to play a bigger and bigger part when pushing the maximum throughput of the solution.
We changed the solution so it would use static queues between consumer and provider and use a selector to correlate on the JMSCorrelationID. This resulted in better throughput in our case. If you are planning on each time (re)creating the temporary queues that your client applications will use, it could start to impact performance when higher throughput rates are needed.
Note that selector performance can also start to play when the number of messages in a queue increase. In our case the solution was designed to hand-off the messages as soon as possible and not play the role of a (storage) buffer in between consumer and provider. As such the number of message inside a queue would always be low.
I am Using WebSphere MQ 7,and I have two clients connected to the same QMgr and consuming messages from same queue, like following code:
while (true) {
TextMessage message = (TextMessage) consumer.receive(1000);
if (message != null) {
System.out.println("*********************" + message.getText());
}
}
I found only one client always retrieve messages. Is there any method to let consume-message load balancing in two client? Any config options in MQ Server side?
When managing queue handles, it is MUCH faster for WMQ to put them in a stack rather than a LIFO queue. So if the messages arrive on the queue slower than it takes to process them, it is possible that an instance will process the message and perform another GET, which WMQ pushes down on the stack. The result is that only one instance will see messages in a low-volume use case.
In larger environments where there are many instances waiting on messages, it is possible that activity will round-robin amongst a portion of those instances while the other instances starve for messages. For example, with 10 GETters on the queue you may see three processing messages and 7 idle.
Although this is considerably faster for MQ, it is confusing to customers who are not aware of how it works internally and so they open PMRs asking this exact question. IBM had to choose among several alternatives:
Adding several code paths to manage by stack for performance when fully loaded, versus manage by LIFO for apparent balancing when lightly loaded. This bloats the code, adds many new decision points to introduce errors and solves a problem that was one of perception rather than reliability or performance.
Educate the customers as to how it works. Of course, once you document it, then you can't change it. The way I found out about this was attending the "WMQ Internals" presentation at IMPACT. It's not in the Infocenter so IBM can change it, but it is available for customers.
Do nothing. Although this is the best result from the code design point of view, the behavior is counter-intuitive. Users need to understand why things do not behave as expected and will waste time trying to find the configuration that results in the desired behavior, or open a PMR.
I don't know for sure that it still works this way but I expect that it does. The way I used to test it was to put many messages on the queue at once and then see how they were distributed. If you drop about 50 messages on the queue in one unit of work, you should see a better distribution between the two instances.
How do you drop 50 messages on the queue at once? First generate them with the applications turned off or to a spare queue. If you generated them in the target queue, use the Q program to move them to the spare queue. Now start the apps and make sure the queue's IPPROC count equals however many instances of the app you started. Using Q again, copy all of the messages to the original queue in a single unit of work. Since they all become available on the queue at once, your two app instances should both immediately be passed a message. If you used copy instead of move, you can repeat this as often as required.
Your client is not doing much, so one instance can probably handle the full load. Try implementing a more realistic workload, or, simpler yet, put a Thread.sleep in the client.
Application server creates a new transaction before calling MDB's onMessage method. Also I am processing database update in onMessage method. Transactions create additional overhead and processing several message in one transaction could increase performance.
Is it possible to make App server to use one transaction for several messages. Or maybe there are other approaches to this problem?
And, by the way, I can't use multiple instances, cause I need to preserve the sequence order.
I guess you can store the messages in a list and depending upon how many messages you want to process in one transaction you can check the size of the list and process the messages.