I have a makefile snippet:
all: $(objects)
fresh: all | clean directory
directory: ;mkdir -p OutputDirectory
clean: ;rm $(objects); rm -rf OutputDirectory
Here, I want to ensure that when I do make fresh - clean should succeed by directory which should be followed by all.
Semantically, here it might not make sense for clean to be order only prerequisite. Assume it to some order only dependency that has to be executed in some order.
The following link shows similar problem but for normal dependencies:
makefile - Impose an order for the prerequisites of a target - Stack Overflow
In fresh's recipe, you could call make twice recursively on the same makefile, for the target that creates the directory and the all target, respectively:
# At the very beginning of the makefile
CURRENT_MAKEFILE := $(lastword $(MAKEFILE_LIST))
# ...
.PHONY: all clean fresh
directory := OutputDirectory
all: $(objects)
fresh: clean
$(MAKE) -f $(CURRENT_MAKEFILE) $(directory)
$(MAKE) -f $(CURRENT_MAKEFILE) all
$(directory): ;mkdir -p $#
clean: ;rm -f $(objects); rm -rf $(directory)
This way, the target all is preceded by the target $(directory), which is in turn preceded by clean.
Related
Appreciating that the title is not quite on "target", how can I make it so that when I call make at the top level, it will recursively call the makefiles in the sub-directories?
Having been intrigued by the Kconfig pattern, to learn it, I've applied it to a mark down to pdf generator.
The recursive Makefile resides in ./scripts/Makefile.boilerplate and is defined:
HEADER=$(wildcard section-header.md)
.PHONY:all clean $(md-sub-y)
all clean: $(md-sub-y)
all: $(TARGET)
clean:
# $(RM) $(TARGET)
$(TARGET): $(HEADER) $(md-y) | $(md-sub-y)
# cat /dev/null $^ > $#
$(md-sub-y):
# $(MAKE) -C $(#D) TOPDIR=$(TOPDIR) $(MAKECMDGOALS)
I'm likely using the order-only prerequisite for the $(TARGET) target inappropriately, but it solved a minor problem.
In each directory there is a unique KConfig file (not shown), which lists CONFIG_{OPTION} macros that evaluate to either y or n. Then each directory contains a Makefile that has the form:
include Kconfig
md-$(CONFIG_INTRODUCTION)+= Introduction.md
md-$(CONFIG_FW_UPDATE)+= FW-update.md
md-sub-$(CONFIG_CHAPTERS)+= Chapters/Chapters.md
md-$(CONFIG_CHAPTERS)+= Chapters/Chapters.md
md-$(CONFIG_EXAMPLES)+= Examples.md
md-$(CONFIG_APPENDIX_I)+= Appendix-I.md
md-$(CONFIG_APPENDIX_II)+= Appendix-II.md
md-$(CONFIG_APPENDIX_III)+= Appendix-III.md
include ${TOPDIR}/scripts/Makefile.boilerplate
And finally, the very top level makefile is (abbreviated):
.PHONY: all clean pdf embedded_html
all clean test: JsonAPI/JsonAPI.md
all: pdf embedded_html
pdf: $(MARKDOWN_FILES:.md=.pdf)
embedded_html: $(MARKDOWN_FILES:.md=.html)
MAKEFLAGS += --no-print-directory
clean:
# $(RM) *.pdf *.html
JsonAPI/JsonAPI.md:
# $(MAKE) -C $(#D) TOPDIR=${CURDIR} $(MAKECMDGOALS)
%.html:%.md
# pandoc -s --toc -c /var/www/css/bootstrap.css $< -f markdown -t html -s -o $#
%.pdf:%.md
# pandoc --read=markdown --table-of-contents --toc-depth=3 --preserve-tabs --standalone --template=template.latex $(PANDOC_ENGINE)=pdflatex --listings -V geometry:margin=1in --highlight-style=pygments -H listing-setup.tex -r markdown+simple_tables+table_captions+yaml_metadata_block $< -o $#
If I call make on an unbuilt directory tree, it works fine. But there are a few problems I'm not sure how to address:
How can I ensure that if an updated .md deeply nested in the directory tree will cause the top level PDF file to be updated? Or, How can I force the makefile's in the sub-directories to be called?
The clean target at the top level is problematic, in that it doesn't recurse through the sub-directories. What do I need to do to remedy that?
Is there a better way to include the Makefile.boilerplate makefile, without having to define the TOPDIR on the $(MAKE) command line as I've done?
For 1, and 2, I'm guessing that an empty target dependency (FORCE:) will be required. And for 3, I've tried using $(CURDIR) but it was always evaluating to the directory the Makefile resided in, not the parent directory where the original make command was invoked.
Changing the md-sub-$(CONFIG_EEEE) macro definition to be just the directory was the key, and to make those targets have an empty rule.
Essentially, the per directory Makefile from above becomes:
include Kconfig
md-$(CONFIG_INTRODUCTION)+= Introduction.md
md-$(CONFIG_FW_UPDATE)+= FW-update.md
md-sub-$(CONFIG_CHAPTERS)+= Chapters/Chapters.md
md-$(CONFIG_CHAPTERS)+= Chapters
md-$(CONFIG_EXAMPLES)+= Examples.md
md-$(CONFIG_APPENDIX_I)+= Appendix-I.md
md-$(CONFIG_APPENDIX_II)+= Appendix-II.md
md-$(CONFIG_APPENDIX_III)+= Appendix-III.md
include ${TOPDIR}/scripts/Makefile.boilerplate
and the default Makefile.boilerplate changes the $(md-sub-y) target too:
$(md-sub-y): FORCE
# $(MAKE) -C $# TOPDIR=$(TOPDIR) $(MAKECMDGOALS)
FORCE:
And the top level makefile no longer needs $(#D) on the command line for the JsonAPI recipe, just $#.
I have a makefile snippet:
all: $(objects)
fresh: clean all
clean: ;rm $(objects)
Here, I want to ensure that when I do make fresh - clean should precede all.
But how can I make sure this, given that when I do make all, clean should not be made?
I can imagine that one way could be like this
fresh: clean
make all
Is it the right (or the only) way to solve this issue?
If you use GNU make:
all:
#echo $#
#sleep 1
#echo end $#
clean:
#echo $#
#sleep 1
#echo end $#
fresh:: clean
fresh:: all
.PHONY: clean fresh all
Please note the double colon after targets fresh! See the documentation:
The double-colon rules for a target are executed in the order they
appear in the makefile.
If you run make -j2 fresh it shows it works as expect:
clean
end clean
all
end all
But with fresh:: clean all doesn't work properly parallel (maybe unexpected).
With BSD make:
all:
#echo $#
#sleep 1
#echo end $#
clean:
#echo $#
#sleep 1
#echo end $#
fresh: clean all
#echo $#
.ORDER: clean all
.PHONY: clean all fresh
Note the line begin with .ORDER. It works well in parallelization too (see man make). Without parallelization the order of dependencies in line fresh: counts.
As you already suggest in your question, calling make recursively on the same makefile for the target all in a recipe whose prerequisite is clean:
# At the very beginning of the makefile
CURRENT_MAKEFILE := $(lastword $(MAKEFILE_LIST))
# ...
.PHONY: fresh
fresh: clean
$(MAKE) -f $(CURRENT_MAKEFILE) all
This imposes an order, since the target fresh depends on the prerequisite clean, clean's recipe will be executed before fresh's recipe, which in turn will execute all's recipe.
Note that I'm using here $(MAKE) instead of make for the recursion.
I have a Makefile which generates JSON from several different Python scripts (the scripts print to stdout) in a single directory, e.g.
/src
scriptOne.py
scriptTwo.py
scriptThree.py
Which outputs the JSON to a folder:
/templates
scriptOne.json
scriptTwo.json
scriptThree.json
I'm trying to restructure so that, for example, each script is in its own subdirectory and the Makefile creates the JSON templates in their consequent subdirectories as follows:
/src
/importantTemplates
scriptOne.py
/notSoImportantTemplates
scriptTwo.py
scriptThree.py
And the output:
/templates
/importantTemplates
scriptOne.json
/notSoImportantTemplates
scriptTwo.json
scriptThree.json
The current Makefile is as follows:
SOURCES := $(shell echo src/*.py)
TARGETS := $(patsubst src/%.py,templates/%.json,$(SOURCES))
all: $(TARGETS)
clean:
rm -f $(TARGETS)
templates/%.json: src/%.py
python2 $< > $#
I've tried changing the wildcards to include a subdirectory for each line e.g. /src/*/*.py, although I just end up with the following:
make: Nothing to be done for `all'.
You want a static pattern rule (4.12 Static Pattern Rules) for this.
SOURCES := $(wildcard src/*/*.py)
TARGETS := $(patsubst src/%.py,templates/%.json,$(SOURCES))
all: $(TARGETS)
clean:
rm -rf templates
$(TARGETS) : templates/%.json: src/%.py
mkdir -p $(#D)
python2 $< > $#
You could avoid needing mkdir -p in that rule body if you wanted to (and go with an order-only prerequisite on the directory instead) but I'm not sure the effort is worth the savings in execution cost. You could avoid the extra shell by combining the two lines mkdir -p $(#D) && python2 $< > $# if you wanted to though.
Please note that the second time you run the make, it will give you the message (if there are no new files):
make: Nothing to be done for `all'.
Try to run make clean and see if you get the same message.
Here is the Makefile which will do what you want:
SOURCES := $(wildcard src/*/*.py)
TARGETS := $(patsubst src/%.py,templates/%.json,$(SOURCES))
FOLDERS := $(sort $(dir $(TARGETS)))
all: $(TARGETS)
clean:
rm -rf $(TARGETS) $(FOLDERS)
$(FOLDERS):
mkdir -p $#
$(TARGETS): $(SOURCES) $(FOLDERS)
python2 $< > $#
The FOLDERS variable will contain the folders you need to create in the template directory. (sort will remove duplicates, so each folder will be there only once)
The $(FOLDERS) rule will create the folders.
The clean rule will remove the folders also.
If you need to add more sources, just do it like this:
SOURCES := $(wildcard src/*/*.py)
SOURCES += $(wildcard src/*.py)
...
I have a directory (root_dir), that contains a number of sub-directories (subdir1, subdir2, ...).
I want to run the make in each directory in root_dir, using a Makefile placed in it.
(Obviously supposed that each of subdir... has inside its own Makefile).
So there are essentially two questions:
How to get a list of directories in Makefile (automatically)?
How to run make for each of the directories inside a make file?
As I know in order to run make in a specific directory I need to do the following:
$(MAKE) -C subdir
There are various problems with doing the sub-make inside a for loop in a single recipe. The best way to do multiple subdirectories is like this:
SUBDIRS := $(wildcard */.)
all: $(SUBDIRS)
$(SUBDIRS):
$(MAKE) -C $#
.PHONY: all $(SUBDIRS)
(Just to point out this is GNU make specific; you didn't mention any restrictions on the version of make you're using).
ETA Here's a version which supports multiple top-level targets.
TOPTARGETS := all clean
SUBDIRS := $(wildcard */.)
$(TOPTARGETS): $(SUBDIRS)
$(SUBDIRS):
$(MAKE) -C $# $(MAKECMDGOALS)
.PHONY: $(TOPTARGETS) $(SUBDIRS)
Try this :
SUBDIRS = foo bar baz
subdirs:
for dir in $(SUBDIRS); do \
$(MAKE) -C $$dir; \
done
This may help you link
Edit : you can also do :
The simplest way is to do:
CODE_DIR = code
.PHONY: project_code
project_code:
$(MAKE) -C $(CODE_DIR)
The .PHONY rule means that project_code is not a file that needs to be
built, and the -C flag indicates a change in directory (equivalent to
running cd code before calling make). You can use the same approach
for calling other targets in the code Makefile.
For example:
clean:
$(MAKE) -C $(CODE_DIR) clean
Source
This is another approach to MadScientist's answer. .PHONY is a GNU-specific feature that can be used to force make into recursing into each subdirectory. However, some non-GNU versions of make do not support .PHONY, so an alternative is a force target.
4.7 Rules without Recipes or Prerequisites
If a rule has no prerequisites or recipe, and the target of the rule
is a nonexistent file, then make imagines this target to have been
updated whenever its rule is run. This implies that all targets
depending on this one will always have their recipe run.
An example will illustrate this:
clean: FORCE
rm $(objects)
FORCE:
Here the target ‘FORCE’ satisfies the special conditions, so the
target clean that depends on it is forced to run its recipe. There is
nothing special about the name ‘FORCE’, but that is one name commonly
used this way.
As you can see, using ‘FORCE’ this way has the same results as using
‘.PHONY: clean’.
Using ‘.PHONY’ is more explicit and more efficient. However, other
versions of make do not support ‘.PHONY’; thus ‘FORCE’ appears in many
makefiles. See Phony Targets.
The following is a minimal example that recurses make into each subdirectory, each of which presumably contains a Makefile. If you simply run make, only the first subdirectory, which is non-deterministic, is processed. You may also run make subdir1 subdir2 ....
# Register all subdirectories in the project's root directory.
SUBDIRS := $(wildcard */.)
# Recurse `make` into each subdirectory.
$(SUBDIRS): FORCE
$(MAKE) -C $#
# A target without prerequisites and a recipe, and there is no file named `FORCE`.
# `make` will always run this and any other target that depends on it.
FORCE:
Here is another example with top-level phony targets: all and clean. Note that the all and clean targets, passed from command-line via $(MAKECMDGOALS), are handled by each subdirectory's all and clean targets respectively.
# Register all subdirectories in the project's root directory.
SUBDIRS := $(wildcard */.)
# Top-level phony targets.
all clean: $(SUBDIRS) FORCE
# Similar to:
# .PHONY: all clean
# all clean: $(SUBDIRS)
# GNU's .PHONY target is more efficient in that it explicitly declares non-files.
# Recurse `make` into each subdirectory
# Pass along targets specified at command-line (if any).
$(SUBDIRS): FORCE
$(MAKE) -C $# $(MAKECMDGOALS)
# Force targets.
FORCE:
You can also define a function in the Makefile (also you of course need an additional makefile in each subdirectory). This is shell-dependent, but can be useful:
define FOREACH
for DIR in packages/*; do \
$(MAKE) -C $$DIR $(1); \
done
endef
.PHONY: build
build:
$(call FOREACH,build)
.PHONY: clean
clean:
$(call FOREACH,clean)
.PHONY: test
test:
$(call FOREACH,test)
Only a small icing on the cake after MadScientist's answer in order to make all the individual targets in the sub-directories available from the top level (you will need to have the SUBDIRS variable defined in order to use the following snippet – you can use MadScientist's answer for that):
# Make all the individual targets in the sub-directories available from the top
# level; as in, for instance, `make foo/my_program` or `make bar/clean`
$(foreach __dir__,$(SUBDIRS),$(__dir__)/%):
#$(MAKE) -C '$(#D)' '$(#F)'
With the code above you can run, for instance,
make foo/my_program
or
make bar/clean
Furthermore, by pasting the code above you can even use an individual target from a sub-directory as a prerequisite for a target in the top level. For example:
my_target: my_subdirectory/my_prerequisite
'my_subdirectory/my_prerequisite' > 'my_target'
…With the example above, launching make my_target from the top level will first build the my_subdirectory/my_prerequisite program, then the latter will be run for building the my_target file.
Since I was not aware of the MAKECMDGOALS variable and overlooked that MadScientist has its own implementation of multiple top-level targets, I wrote an alternative implementation. Maybe someone find it useful.
SUBDIRS := $(wildcard */.)
define submake
for d in $(SUBDIRS); \
do \
$(MAKE) $(1) --directory=$$d; \
done
endef
all:
$(call submake,$#)
install:
$(call submake,$#)
.PHONY: all install $(SUBDIRS)
There is a library called prorab for GNU make which supports inclusion of standalone makefiles in subdirectories.
Some info on github: https://github.com/cppfw/prorab/blob/master/wiki/HomePage.adoc
Basically, with prorab invoking all makefiles in subdirectories looks like this:
include prorab.mk
$(eval $(prorab-build-subdirs))
In reference to https://stackoverflow.com/posts/17845120/revisions
This is what I learned from that post.
Top Level Makefile
# set the default goal.
# I want the default to really just dump contents of dirs
# as a stub. For instance, I don't want it to
# push code or
.DEFAULT_GOAL := deploy
TOPTARGETS := all clean
SUBDIRS := docs src
$(TOPTARGETS): $(SUBDIRS)
$(SUBDIRS):
echo "make arg is" $(MAKECMDGOALS)
$(MAKE) -C $# $(MAKECMDGOALS)
SUBCLEAN = $(addsuffix .clean,$(SUBDIRS))
clean: $(SUBCLEAN)
$(SUBCLEAN): %.clean:
$(MAKE) -C $* clean
deploy:
echo do deploy stub
The src/ and docs/ common to this Makefile directory, all have a corresponding Makefile.
Here is an example of the docs setup:
# set the default goal.
.DEFAULT_GOAL := list_docs
list_docs:
ls -l
clean:
echo "docs: make clean"
-rm "*.backup"
I did this a little different than any of the answers because I didn't want to have to define each possible make target
SUBDIRS := $(patsubst %/,%,$(wildcard */))
.PHONY: all $(MAKECMDGOALS) $(SUBDIRS)
$(MAKECMDGOALS) all: $(SUBDIRS)
$(SUBDIRS):
$(MAKE) -C $# $(MAKECMDGOALS)
I'm having some trouble understanding how to design my makefile to build my project the way I want to. Specifically, I can't figure out how to keep all source files in a src directory, while putting all binaries in a bin directory except the linked executable, which goes in the project root.
This is my makefile:
# Compiler options
FC := mpif90
FFLAGS := -O3 -g -Wall -Warray-bounds -ffixed-line-length-none -fbounds-check
VPATH := src
BINDIR := bin
# Define file extensions
.SUFFIXES:
.SUFFIXES: .f .o .mod
# All modules
OBJS := $(BINDIR)/ratecoeffs.o $(BINDIR)/interpolation.o $(BINDIR)/io.o $(BINDIR)/eedf.o $(BINDIR)/single_particle.o $(BINDIR)/physics.o $(BINDIR)/random.o $(BINDIR)/mpi.o $(BINDIR)/precision.o $(BINDIR)/populations.o
# Build rules
all: runner | $(BINDIR)
$(BINDIR):
mkdir -p $(BINDIR)
$(BINDIR)/%.o: $(VPATH)/%.f | $(BINDIR)
$(FC) $(FFLAGS) -c $^ -o $#
runner: $(OBJS)
clean:
#rm -rf $(BINDIR)
Running make builds everything allright - it finds all source files in src and puts all .o files in bin - but the module files (.mod) that are generated by the compiler are put in the project root instead of in the bin directory. I realize I could just specify a rule to place them there, but that messes with the build order, and will sometimes break the build.
What is the "correct" way to get this behavior?
And yes, I've looked at autotools and automake, but I've never used them before and they seem to be overkill for this project. As I couldn't find any good tutorials on how they work (no, I didn't like the tutorial on gnu.org) I'd prefer if I could avoid having to learn this tool just to get this work...
Assuming your underlying Fortran compiler is gfortran, use the -J command line option.
$(FC) $(FFLAGS) -c $^ -o $# -J$(BINDIR)
With an eye to the future, you may be better off creating a MODDIR or similar variable, that you use instead of BINDIR. Object code (*.o) and mod files have different roles to play in later compilation and linking steps - in larger projects they are often kept separate.
It would be probably more in the sense of the make system to change into the obj-directory and do the compilation from there. Via the VPATH option you can let make to find your source files automatically. You could easily call your makefile recursively from the right directory. Below you find a trivial example which would be straightforward to adapt to your case. Please note, that it only works with GNU make.
ifeq (1,$(RECURSED))
VPATH = $(SRCDIR)
########################################################################
# Project specific makefile
########################################################################
FC = gfortran
FCOPTS =
LN = $(FC)
LNOPTS =
OBJS = accuracy.o eqsolver.o io.o linsolve.o
linsolve: $(OBJS)
$(LN) $(LNOPTS) -o $# $^
%.o: %.f90
$(FC) $(FCOPTS) -c $<
.PHONY: clean realclean
clean:
rm -f *.mod *.o
realclean: clean
rm -f linsolve
accuracy.o:
eqsolver.o: accuracy.o
io.o: accuracy.o
linsolve.o: accuracy.o eqsolver.o io.o
else
########################################################################
# Recusive invokation
########################################################################
BUILDDIR = _build
LOCALGOALS = $(BUILDDIR) distclean
RECURSIVEGOALS = $(filter-out $(LOCALGOALS), $(MAKECMDGOALS))
.PHONY: all $(RECURSIVE_GOALS) distclean
all $(RECURSIVEGOALS): $(BUILDDIR)
+$(MAKE) -C $(BUILDDIR) -f $(CURDIR)/GNUmakefile SRCDIR=$(CURDIR) \
RECURSED=1 $(RECURSIVEGOALS)
$(BUILDDIR):
mkdir $(BUILDDIR)
distclean:
rm -rf $(BUILDDIR)
endif
The principle is simple:
In the first part you write your normal makefile, as if you would create the object files in the source directory. However, additionally you add the VPATH option to make sure the source files are found (as make will be in the directory BUILDDIR when this part of the makefile is processed).
In the second part (which is executed first, when the variable RECURSED is not set yet), you change to the BUILDIR directory and invoke your makefile from there. You pass some helper variables (e.g. the current directory) and all make goals, apart of those, which must be executed from outside BUILDDIR (e.g. distclean and the one creating BUILDDIR itself). The rules for those goals you specify also in the second part.