Algorithm - finding triangle with maximum perimeter - algorithm

I am given a set of N points in 2D plane represented as (x,y) coordinate pairs. What is a fast algorithm to choose three points so that the triangle formed by these points has maximum perimeter?

This is preemptive in nature
Pick a point farthest from the flock, lets call it point A.
draw an imaginary straight line that cuts through A to rest of the flock.
pick another opposite point, that its deviation(from the imaginary
straight line) is highest to right.
pick another opposite point, that
is deviation(from the imaginary straight line) is highest to the
left.
Check if a triangle can be made?.
if no check another highest point in another axis

Here's a rough idea (I'm not too versed in computational geometry). A triangle with a fixed perimeter and base can generate an ellipse. For example, here B and C are fixed and any point, A, on the ellipse will keep the triangle perimeter the same:
For each segment connecting two points, pick a random third point in our set. Generate the relevant ellipse, then pick another random point from our set that's outside that ellipse. Each ellipse will exclude points that generate triangles of the same or smaller perimeter until we run out of points, having found the largest. Of course, we would need some efficient methods to find relevant points (perhaps using space partitioning?).

Related

Shifting Polygon inside Polygon

I'm having troubles figuring out an algorithm to solve the following problem:
I want the user to be able to snap the rectangle (Could be any type of polygon) to the 4 corners of the polygon such that it's as far inside the polygon as it can be.
What I'm trying so far:
Allow user to get the object.
Find the nearest vertice on the polygon to the rectangle.
Find the furthest vertice on the rectangle to the polygon's nearest vertice.
Use a plane to find the first intersection point with the furthest rectangle's point to the polygon's point.
Shift up or down using the corresponding x/y plane based on whether the furthest point is further in the x/y coordinate.
Keep repeating the steps above until everything is inside.
As long as the enclosing polygon is convex, you can write this as a linear programming problem and then apply https://en.wikipedia.org/wiki/Simplex_algorithm to find the answer. The smaller polygon you are putting inside can be as complicated as you want.
Your inequalities are all of the conditions to make sure that each vertex of the smaller polygon is inside of the larger. You don't have to be clever here, there is no cost to extra inequalities that don't come into play.
The function to optimize is constructed as follows. Look at the interior angle of the vertex you are trying to get close to. Draw a coordinate system at that point with one axis pointing directly into the polygon (call that axis y) and the other at right angles to the first (call that axis x). You want to minimize the y value of the nearest vertex on the polygon you are putting in. (Just put the polygon you are putting in in the middle, and search for the nearest vertex. Use that.
The solution that you find will be the one that puts the two vertices as close together as possible subject to the condition that the smaller polygon has to be inside of the larger.

Triangle enclosing the biggest number of points

Given set of 2D points find a triangle built from those points, that encloses the biggest number of points.
Brutal algorithm for this is just building triangles from every possible triad of points and checking how many points they enclose, but time complexity of this solution is O(n^4).
For the optimal solution I thought about first finding the convex hull of those points and arranging points inside this hull with some structure, but I can't figure it out.
Do you have any ideas about the optimal solution for this kind of problem?
In a set of n points, there are (n choose 3) triangles, and using brute force to check for each point whether it is contained in each triangle indeed has O(n4) complexity. To give a practical example of a few set sizes:
points: 100 1,000 10,000
triangles: 161,700 166,167,000 166,616,670,000
checks: 15,684,900 165,668,499,000 1,665,666,849,990,000
Below are a few geometrical ideas; they don't lead straight to a solution, but they can reduce the number of triangles that have to be checked.
Counter-example for convex hull
First of all, using only points on the convex hull is not guaranteed to give the optimal solution. Consider this counter-example:
The convex hull is the red rectangle. However, if we use two of its sides and a diagonal to form a triangle, the diagonal will cut through the central point cluster and leave out some of the points. And even if we only use 1 or 2 corners of the rectangle, combined with a point in the center, it will always cut through the blue triangle and leave out some points. The blue triangle, which has no points on the convex hull, is in fact the optimal solution.
Triangle contained in triangle
If you consider a triangle abc, and three points d, e and f contained within it, then the triangle def cannot be the triangle which contains the most points, because triangle abc contains at least three more points. Triangles made from a combination of points from abc and def, like abd, also contain fewer points than abc.
This means that finding a triangle and some points contained within it, allows you to discard a number of triangles. In the next paragraphs, we will use this idea to discard as many triangles as possible from having to be checked.
Expanding a triangle
If we consider a triangle made from three randomly chosen points a, b and c (named clock-wise), and then check whether all other points are on the left of right side of the lines |ab|, |bc| and |ca|, the points are partitioned into 7 zones:
If we replace a corner point of the triangle by a point in the adjacent coloured zone, e.g. zone LRL for point a, we get a larger triangle that contains triangle abc. If we randomly pick three points from zones LRL, LLR and RLL, we can expand the triangle like this:
We can then partition the points again using this new triangle a'b'c' (points already in zone RRR can be added to the new zone RRR without checking) and expand the triangle again as long as there is at least one point in the zones LRL, LLR or RLL.
If we have caught enough points inside the expanded triangle, we can now use the brute force algorithm, but skip any triangle which doesn't have a point outside of the expanded triangle a'b"c'.
If we haven't caught enough points to make that feasible, we can try again with another three random points. Note, however, that you should not use the union of the points contained within several triangles; three points which are each contained in another triangle, but not in the same triangle, can still be the triangle containing the most points.
Excluding triangles in multiple steps
We could repeatedly choose a random triangle, expand it maximally, and then mark the triangles made from three points on or inside the triangle, to then exclude these from the check. This would require storing a boolean for all possible triangles, e.g. in a 3D bit array, so it is only feasible for sets up to a few thousand points.
To simplify things, instead of expanding random triangles, we could do this with a number of randomly chosen triangles, or triangles made from points on the convex hull, or points far apart when sorted in the x or y-direction, or ... But any of these methods will only help us to find triangles which can be excluded, they will not give us optimal (or even good-enough) triangles by themselves.

Point in polygon on Earth globe

I have a list of coordinates (latitude, longitude) that define a polygon. Its edges are created by connecting two points with the arc that is the shortest path between those points.
My problem is to determine whether another point (let's call it U) lays in or out of the polygon. I've been searching web for hours looking for an algorithm that will be complete and won't have any flaws. Here's what I want my algorithm to support and what to accept (in terms of possible weaknesses):
The Earth may be treated as a perfect sphere (from what I've read it results in 0.3% precision loss that I'm fine with).
It must correctly handle polygons that cross International Date Line.
It must correctly handle polygons that span over the North Pole and South Pole.
I've decided to implement the following approach (as a modification of ray casting algorithm that works for 2D scenario).
I want to pick the point S (latitude, longitude) that is outside of the polygon.
For each pair of vertices that define a single edge, I want to calculate the great circle (let's call it G).
I want to calculate the great circle for pair of points S and U.
For each great circle defined in point 2, I want to calculate whether this great circle intersects with G. If so, I'll check if the intersection point lays on the edge of the polygon.
I will count how many intersections there are, and based on that (even/odd) I'll decide if point U is inside/outside of the polygon.
I know how to implement the calculations from points 2 to 5, but I don't have a clue how to pick a starting point S. It's not that obvious as on 2D plane, since I can't just pick a point that is to the left of the leftmost point.
Any ideas on how can I pick this point (S) and if my approach makes sense and is optimal?
Thanks for any input!
If your polygons are local, you can just take the plane tangent to the earth sphere at the point B, and then calculate the projection of the polygon vertices on that plane, so that the problem becomes reduced to a 2D one.
This method introduces a small error as you are approximating the spherical arcs with straight lines in the projection. If your polygons are small it would probably be insignificant, otherwise, you can add intermediate points along the arcs when doing the projection.
You should also take into account the polygons on the antipodes of B, but those could be discarded taking into account the polygons orientation, or checking the distance between B and some polygon vertex.
Finally, if you have to query too many points for that, you may like to pick some fixed projection planes (for instance, those forming an octahedron wrapping the sphere) and precalculate the projection of the polygons on then. You could even create some 2d indexing structure as a quadtree for every one in order to speed up the lookup.
The biggest issue is to define what we mean by 'inside the polygon'.
On a sphere, every polygon (as long as the lines are not intersecting) defines two regions of the sphere. Both regions are equally qualified to be called the inside of the polygon.
Consider a simple, 1-meter on a side, yellow square around the south pole.
You can think of the yellow area to be the inside of the square OR you can think of the square enclosing everything north of each line (the rest of the earth).
So, technically, any point on the sphere 'validly' inside the polygon.
The only way to disambiguate is to select which side of the polygon you want. For example, define the interior to always be the area to the right of each edge.

Find the point furthest away from n other points

I am trying to create an algorithm for 'fleeing' and would like to first find points which are 'safe'. That is to say, points where they are relatively distant from other points.
This is 2D (not that it matters much) and occurs within a fixed sized circle.
I'm guessing the sum of the squared distances would produce a good starting equation, whereby the highest score is the furthest away.
As for picking the points, I do not think it would be possible to solve for X,Y but approximation is sufficient.
I did some reading and determined that in order to cover the area of a circle, you would need 7 half-sized circles (with centers forming a hex, and a seventh at the center)
I could iterate through these, all of which are within the circle to begin with. As I choose the best scoring sphere, I could continue to divide them into 7 spheres. Of course, excluding any points which fall outside the original circle.
I could then iterate to a desired precision or a desired level.
To expand on the approach, the assumption is that it takes time to arrive at a location and while the location may be safe, the trip in between may not. How should I incorporate the distance in the equation so that I arrive at a good solution.
I suppose I could square the distance to the new point and multiply it by the score, and iterate from there. It would strongly favor a local spot, but I imagine that is a good behavior. It would try to resolve a safe spot close by and then upon re-calculating it could find 'outs' and continue to sneak to safety.
Any thoughts on this, or has this problem been done before? I wasn't able to find this problem specifically when I looked.
EDIT:
I've brought in the C# implementation of Fortune's Algorithm, and also added a few points around my points to create a pseudo circular constraint, as I don't understand the algorithm well enough to adjust it manually.
I realize now that the blue lines create a path between nodes. I can use the length of these and the distance between the surrounding points to compute a path (time to traverse and danger) and weigh that against the safety (the empty circle it is trying to get to) to determine what is the best course of action. By playing with how these interact, I can eliminate most of the work I would have had to do, simply by using the voronoi. Also my spawning algorithm will use this now, to determine the LEC and spawn at that spot.
You can take the convex hull of your set of locations - the vertices of the convex hull will give you the set of "most distant" points. Next, take the centroid of the points you're fleeing from, then determine which vertex of the convex hull is the most distant from the centroid. You may be able to speed this up by, for example, dividing the playing field into quadrants - you only need to test the vertices that are in the furthermost quadrant (e.g., if the centroid is in the positive-x positive-y quadrant, then you only need to check the vertices in the negative-x negative-y quadrant); if the playing field is an irregular shape then this may not be an option.
As an alternative to fleeing to the most distant point, if you have a starting point that you're fleeing from (e.g. the points you're fleeing from are enemies, and the player character is currently at point X which denotes its starting point), then rather than have the player flee to the most distant point you can instead have the player follow the trajectory that most quickly takes them from the centroid of the enemies - draw a ray from the enemies' centroid through the player's location, and that ray gives you the direction that the player should flee.
If the player character is surrounded then both of these algorithms will give nonsense results, but in that case the player character doesn't really have any viable options anyway.

Algorithm for bisecting a set of points using a circle of fixed radius

Suppose I have a set of points in the Cartesian plane, defined by an array/vector of (X,Y) coordinates. This set of points will be "contiguous" in the coordinate plane, if any set of discontinuous points can be contiguous. That is, these points originated as a rectangular grid in which regions of points were eliminated by a prior algorithm. The shape outlined by the points is arbitrary, but it will tend to have arcs for edges.
Suppose further that I can create circles of fixed radius r.
I would like an algorithm that will find me the center X,Y for a circle that will enclose as close to exactly half of the given points as possible.
OK, try this (sorry if I have very bad wording: I didn't learn my Maths in english)
Step 1: Find axis
For all pairs of points, that are less than 2r apart calculate how many points lie on either side of the connecting line
Chose the pair with the worst balance
Calculate the line, that bisects these two points as an axis ("Axis of biggest concavity")
Step 2: Find center
Start on the axis far (>2r) away on the side, that had the lower point count in step 1 (The concave side)
Move the center on the axis, until you reach the desired point. This can be done by moving up with a step of sqrt(delta), where delta is the smallest distance between 2 points in the set, if overreaching move back halfing the step, etc.
You might want to look into the algorithm for smallest enclosing circle of a point set.
A somewhat greedy algorithm would be to simply remove points 1 at a time until the circle radius is less or equal to r.

Resources