I'm using GCC 4.8.1 with address sanitizer option turned on, i.e. I'm compiling and linking using -fsanitize=address. With this old version GCC doesn't provide a worth output. It needs a symbolizer. No need for extra applications on newer versions. I can't install LLVM packages on target machine, so my question is: is it possible to perform the analysis offline? I mean: can I get the output from the target machine and then analyze the result using symbolizer on the development machine?
You can pipe unsymbolized output of sanitized executable to asan_symbolize script, either on target or on development machine.
Note that by default asan_symbolize tries to locate symbols in executables on machine it's run on. When if target and development executables do not match you'll need to use -s flag to specify target sysroot.
Related
I'm looking for a cross compiler to compile for linux under the msys2 environment.
I'm looking for somethink like x86_64-w64-linux-gcc. But I can't find it.
Which package I have to install?
You'll need a VM or a Linux machine to test the resulting binaries, so I'd just compile on one in the first place.
But cross-compilation should be possible too:
Boot up your favorite Linux distribution in a VM.
Install the libraries you want to have. Install g++ to get libstdc++, and possibly other basic libraries.
Copy the root directory / from the VM to the Windows machine.
You only need headers and libraries, not everything. You'll have to experiment to know what directories can or can't be safely removed.
Install Clang on the Windows machine. Installing LLD is also a good idea (it's a separate package in MSYS2; or, if you're using the official Clang binaries, it's bundled with them).
We're using Clang, because it's inherently a cross-compiler, i.e. doesn't require separate binaries to target a different platform, unlike GCC.
Compile with Clang with --target=x86_64-pc-linux-gnu --sysroot=path/to/root/directory.
-fuse-ld=lld is probably a good idea as well.
The string x86_64-pc-linux-gnu was obtained by running clang++ --version on a Linux machine.
You might need a few more flags, but this should be a good starting point.
My developing/producing environments are all CentOS-7.7.
In order to compile my program with gcc-8.3.0, I have installed "devtoolset-8" on my developing env, but it can not be used in the way same as gcc-4.8.5 that was shipped with CentOS7 oringinally.
Every time I need to compile a program, I must use "scl enable devtoolset-8 -- bash" to switch to gcc8 instead of gcc4.8.5.
When the program was deploying onto the producing-env, there is no gcc8, nor libstdc++.so.6.0.25, so it can not run.
I guess libstdc++.so.6.0.25 should be released with gcc8? I can neither install "devtoolset-8" on the producing-env, nor build gcc8 from source on the producing env.
The version of libstdc++ that can be installed from the official yum repo of CentOS, is libstdc++.so.6.0.19, hence my programs can not be loaded at the producing-env.
How to let such programs to run?
Thanks!
Pls forgive my Ugly English.
In order to not have to copy or ship a separate libstdc++.so but rather link statically (as suggested in a comment) against the C++ runtime, one can link C++ programs with -static-libstdc++ (also specifying -static-libgcc will also make sure that the program does not depend on a recent enough version of libgcc_s.so on the system - although that should rarely be a problem).
There can also be the issue of the target system having a version of glibc that is too old (relative to the build system). In that case, one could anyhow compile gcc of no matter how recent of a version on the older system, so that the resulting C++ executables as well as libstdc++ are linked against the older glibc. Linking C++ programs with -static-libstdc++ will again help to not depend on the program having to be able to find libstdc++.so at run-time.
Finally, the C++ program could also be linked with -static not depending on any dynamic libraries at all.
I'm trying to configure binutils for an ARM processor, specifically the ARMv5TE. The processor is the Marvell 88F5281. Presently the device is running NetBSD, so I want to make sure I configure binutils for the right target arch / OS.
Is there a way to list a combination of targets / OSes when configuring binutils?
So far I found, arm-*-netbsdelf from the following page, http://gcc.gnu.org/install/specific.html#arm-x-eabi
But I am still wondering if there is a list of targets / OSes when I run the configure script from the command line.
A good place to start might be the NetBSD build.sh, which is designed to build a complete cross compiler toolset for a NetBSD target on a POSIX host.
Download and extract the source tree for the NetBSD version your target is running
Run './build.sh -m evbarm tools'
When completed it should tell you where to find built binutils and cross compiler
Note - if the target is bigendian you will need to use evbarm-eb in the build.sh command.
I want to compile a source code, but there are some compiling errors about __sync_xxx functions (__sync_bool_compare_and_swap etc.)
GCC version on machine is 3.4.3 (it must be gcc 4.1 or over for supporting atomic builtins), so I have downloaded GCC v4.6, copied it to another directory (I didn't remove v3.4.3) then change the $PATH path for GCC but it doesn't work (the same error occurs).
I want to ask that is only changing gcc path with export PATH=... enough for compiling with new GCC?
Use the following configure option when compiling gcc:
--program-prefix=foo --program-suffix=bar
and it will produce bin programs of the form "foo-gcc-bar", so that you may differentiate different builds of gcc.
Replace foo and/or bar with an appropriate "tag" for your build (eg "-4.6" for example).
This way if it doesn't find your toolchain correctly it will fail fast rather than using the 3.4 version.
It also means that different toolchain builds can coexist in the standard installation prefix directories.
We have to use -march=686 switch to get it to work on intel.
Try checking and updating LD_LIBRARY_PATH, to use the lib path for the new gcc installed.
I am trying to make the ARM toolchain in ubuntu. The way it is specified in http://hri.sourceforge.net/tools/arm-elf-gcc.html
I am getting the following error:
Configuring for a x86_64-unknown-linux-gnu host.
Invalid configuration `x86_64-unknown-linux-gnu': machine `x86_64-unknown' not recognized
Invalid configuration `x86_64-unknown-linux-gnu': machine `x86_64-unknown' not recognized
Unrecognized host system name x86_64-unknown-linux-gnu.
does anybody have idea whats going wrong here.
A Google-search on the "machine `x86_64-unknown' not recognized" error message indicates that this can happen if the config.guess and config.sub files in the program you're building are too old to recognize the machine type for 64-bit linux. I expect that's your problem. You can fix that by replacing the ones in your GCC source tree with newer versions; your system should have some in the /usr/share/libtool directory that will work. Alternately, compile in a 32-bit Linux installation, or with "--build=i686-pc-linux-gnu --host=i686-pc-linux-gnu" configure options.
There are also copies here:
http://cvs.savannah.gnu.org/viewvc/*checkout*/config/config/config.guess
http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/config.sub
The real question, though, is: Why you are trying to build a version of the ARM toolchain that's that old? The directions on the site you link to will lead you to download the sources for the 2.95.3 version of GCC -- which was released nearly a decade ago. In GCC terms, that's positively ancient; the latest version is 4.5. It's older than a lot of ARM instruction-set changes, too.
Thus, the right solution to your problem, unless you have some specific need for a 2.95 compiler, is to get a version of GCC that's much more recent.
Also, you'll probably save some pain by not compiling it yourself, unless you particularly want to. There are numerous sources of precompiled cross-compilers; since I work at CodeSourcery, I'll recommend ours (which you can download and use for free):
http://www.codesourcery.com/sgpp/lite/arm/portal/subscription?#template=lite. If you want something equivalent to the compiler on the page you linked to, you probably want the "uClinux" version.