Can I have a dynamic host policty with autocert? - go

I am looking at some sample code for using autocert with a go web server.
Would it be possible for the hostPolicy implementation to by dynamic i.e. read the while listed hosts from the database (as they will change constantly).
m := autocert.Manager{
Cache: certcache,
Prompt: autocert.AcceptTOS,
HostPolicy: hostPolicy,
}
What would a skeleton structure look for a custom hostPolicy implementation?
https://github.com/golang/crypto/blob/master/acme/autocert/autocert.go#L60
Is has to return a function?

Does it have to return a function?
yes, this is part of the signature of the autocert.Manager struct.
The Manager.HostPolicy field is of type autocert.HostPolicy, which is, indeed, a function of type func(ctx context.Context, host string) error.
What would a skeleton structure look for a custom hostPolicy implementation?
You simply set a custom function for the HostPolicy field to implement the logic to query the database.
m := autocert.Manager{
// ... more fields here
HostPolicy: func(ctx context.Context, host string) error{
// implement database calls here
return nil
},
}
As per the doc, you should return an error to reject an host.

Related

How can I separate generated code package and user code but have them accessible from one place in code

I am newer to golang, so I have some courses that I bought from udemy to help break me into the language. One of them I found very helpful for a general understanding as I took on a project in the language.
In the class that I took, all of the sql related functions were in the sqlc folder with the structure less broken out:
sqlc
generatedcode
store
One of those files is a querier that is generated by sqlc that contains an interface with all of the methods that were generated. Here is the general idea of what it currently looks like: https://github.com/techschool/simplebank/tree/master/db/sqlc
package db
import (
"context"
"github.com/google/uuid"
)
type Querier interface {
AddAccountBalance(ctx context.Context, arg AddAccountBalanceParams) (Account, error)
CreateAccount(ctx context.Context, arg CreateAccountParams) (Account, error)
...
}
var _ Querier = (*Queries)(nil)
Would it be possible to wrap both what sqlc generates AND any queries that a developer creates (dynamic queries) into a single querier? I'm also trying to have it so that the sqlc generated code is in its own folder. The structure I am aiming for is:
sql
sqlc
generatedcode
store - (wraps it all together)
dynamicsqlfiles
This should clear up what a I mean by store: https://github.com/techschool/simplebank/blob/master/db/sqlc/store.go
package db
import (
"context"
"database/sql"
"fmt"
)
// Store defines all functions to execute db queries and transactions
type Store interface {
Querier
TransferTx(ctx context.Context, arg TransferTxParams) (TransferTxResult, error)
}
// SQLStore provides all functions to execute SQL queries and transactions
type SQLStore struct {
db *sql.DB
*Queries
}
// NewStore creates a new store
func NewStore(db *sql.DB) Store {
return &SQLStore{
db: db,
Queries: New(db),
}
}
I'm trying to run everything through that store (both generated and my functions), so I can make a call similar to the CreateUser function in this file (server.store.): https://github.com/techschool/simplebank/blob/master/api/user.go
arg := db.CreateUserParams{
Username: req.Username,
HashedPassword: hashedPassword,
FullName: req.FullName,
Email: req.Email,
}
user, err := server.store.CreateUser(ctx, arg)
if err != nil {
if pqErr, ok := err.(*pq.Error); ok {
switch pqErr.Code.Name() {
case "unique_violation":
ctx.JSON(http.StatusForbidden, errorResponse(err))
return
}
}
ctx.JSON(http.StatusInternalServerError, errorResponse(err))
return
}
I've tried creating something that houses another querier interface that embeds the generated one, then creating my own db.go that uses the generated DBTX interface but has its own Queries struct, and New function. It always gives me an error that the Queries struct I created aren't implementing the functions I made, despite having it implemented in one of the custom methods I made.
I deleted that branch, and have been clicking through the simplebank project linked above to see if I can find another way this could be done, or if I missed something. If it can't be done, that's okay. I'm just using this as a good opportunity to learn a little more about the language, and keep some code separated if possible.
UPDATE:
There were only a few pieces I had to change, but I modified the store.go to look more like:
// sdb is imported, but points to the generated Querier
// Store provides all functions to execute db queries and transactions
type Store interface {
sdb.Querier
DynamicQuerier
}
// SQLStore provides all functions to execute SQL queries and transactions
type SQLStore struct {
db *sql.DB
*sdb.Queries
*dynamicQueries
}
// NewStore creates a new Store
func NewStore(db *sql.DB) Store {
return &SQLStore{
db: db,
Queries: sdb.New(db),
dynamicQueries: New(db),
}
}
Then just created a new Querier and struct for the methods I would be creating. Gave them their own New function, and tied it together in the above. Before, I was trying to figure out a way to reuse as much of the generated code as possible, which I think was the issue.
Why I wanted the Interface:
I wanted a structure that separated the files I would be working in more from the files that I would never touch (generated). This is the new structure:
I like how the generated code put everything in the Querier interface, then checked that anything implementing it satisfied all of the function requirements. So I wanted to replicate that for the dynamic portion which I would be creating on my own.
It might be complicating it a bit more than it would 'NEED' to be, but it also provides an additional set of error checking that is nice to have. And in this case, even while maybe not necessary, it ended up being doable.
Would it be possible to wrap both what sqlc generates AND any queries that a developer creates (dynamic queries) into a single querier?
If I'm understanding your question correctly I think that you are looking for something like the below (playground):
package main
import (
"context"
"database/sql"
)
// Sample SQL C Code
type DBTX interface {
ExecContext(context.Context, string, ...interface{}) (sql.Result, error)
PrepareContext(context.Context, string) (*sql.Stmt, error)
QueryContext(context.Context, string, ...interface{}) (*sql.Rows, error)
QueryRowContext(context.Context, string, ...interface{}) *sql.Row
}
type Queries struct {
db DBTX
}
func (q *Queries) DeleteAccount(ctx context.Context, id int64) error {
// _, err := q.db.ExecContext(ctx, deleteAccount, id)
// return err
return nil // Pretend that this always works
}
type Querier interface {
DeleteAccount(ctx context.Context, id int64) error
}
//
// Your custom "dynamic" queries
//
type myDynamicQueries struct {
db DBTX
}
func (m *myDynamicQueries) GetDynamicResult(ctx context.Context) error {
// _, err := q.db.ExecContext(ctx, deleteAccount, id)
// return err
return nil // Pretend that this always works
}
type myDynamicQuerier interface {
GetDynamicResult(ctx context.Context) error
}
// Combine things
type allDatabase struct {
*Queries // Note: You could embed this directly into myDynamicQueries instead of having a seperate struct if that is your preference
*myDynamicQueries
}
type DatabaseFunctions interface {
Querier
myDynamicQuerier
}
func main() {
// Basic example
var db DatabaseFunctions
db = getDatabase()
db.DeleteAccount(context.Background(), 0)
db.GetDynamicResult(context.Background())
}
// getDatabase - Perform whatever is needed to connect to database...
func getDatabase() allDatabase {
sqlc := &Queries{db: nil} // In reality you would use New() to do this!
myDyn := &myDynamicQueries{db: nil} // Again it's often cleaner to use a function
return allDatabase{Queries: sqlc, myDynamicQueries: myDyn}
}
The above is all in one file for simplicity but could easily pull from multiple packages e.g.
type allDatabase struct {
*generatedcode.Queries
*store.myDynamicQueries
}
If this does not answer your question then please show one of your failed attempts (so we can see where you are going wrong).
One general comment - do you really need the interface? A common recommendation is "Accept interfaces, return structs". While this may not always apply I suspect you may be introducing interfaces where they are not really necessary and this may add unnecessary complexity.
I thought that the Store, which was housing both Queriers, was tying it all together. Can you explain a little with the example above (in the question post) why it's not necessary? How does SQLStore get access to all of the Querier interface functions?
The struct SQLStore is what is "tying it all together". As per the Go spec:
Given a struct type S and a named type T, promoted methods are included in the method set of the struct as follows:
If S contains an embedded field T, the method sets of S and *S both include promoted methods with receiver T. The method set of *S also includes promoted methods with receiver *T.
If S contains an embedded field *T, the method sets of S and *S both include promoted methods with receiver T or *T.
So an object of type SQLStore:
type SQLStore struct {
db *sql.DB
*sdb.Queries
*dynamicQueries
}
var foo SQLStore // Assume that we are actually providing values for all fields
Will implement all of the methods of sdb.Queries and, also, those in dynamicQueries (you can also access the sql.DB members via foo.db.XXX). This means that you can call foo.AddAccountBalance() and foo.MyGenericQuery() (assuming that is in dynamicQueries!) etc.
The spec says "In its most basic form an interface specifies a (possibly empty) list of methods". So you can think of an interface as a list of functions that must be implemented by whatever implementation (e.g. struct) you assign to the interface (the interface itself does not implement anything directly).
This example might help you understand.
Hopefully that helps a little (as I'm not sure which aspect you don't understand I'm not really sure what to focus on).

Insert data with Gorm with reflect

I'm creating a basic REST service. My intent is to write the logic for the resources as abstractly as possible. What I mean is if I have already created a CRUD logic for endpoint /devices for example, then when I need a new resource endpoint like /cars, I should not be repeating myself over the CRUD procedures.
In another language like Python, classes and methods are first class objects and that can be stored in a list or dictionary (map) and then instantiated as needed. In Go it doesn't seem as easy. I tried to use the reflect package.
First I create a TypeRegistry according to this.
var TypeRegistry = make(map[string]reflect.Type)
TypeRegistry["devices"] = reflect.TypeOf(models.Device{}) // models.Device{} is the Gorm SQL table model
Then I have handler creator which is intended to handle the creation of all types of resources like this (error handling redacted):
func CreateOneHandler(typeString string) func(http.ResponseWriter, *http.Request) {
return func(w http.ResponseWriter, r *http.Request) {
defer r.Body.Close()
jsn, _ = ioutil.ReadAll(r.Body)
jsonBytes, _ := datamapper.CreateOne(typeString, jsn)
w.Write(jsonBytes)
}
}
I'm using Chi, so I bind the handlers like this:
func addRoute(r chi.Router, endpoint string, typeString string) {
r.Route("/"+endpoint, func(r chi.Router) {
typeString := endpoint
r.Post("/", CreateOneHandler(typeString))
})
}
The idea is to, after defining the Gorm models, simply add routes by calling it repeatedly, addRoute(r, "devices"); addRoute(r, "cars") for a consistent REST interface across multiple models.
Now within CreateOne() I want to insert something into the table:
func CreateOne(typeString string, json []byte) ([]byte, error) {
modelType := typeregistry.TypeRegistry[typeString]
value := reflect.New(modelType)
db.Create(modelPtr.Elem()) // ==> Now this doesn't work
}
How do I make it work? Gorm said "create failed no such table: value". Because a reflect value or reflect type isn't the same as if I were just to instantiate objects the regular way. How do I make it work?
(A side note: given the static nature of the type switch and type assertions, I am already compromising some of my designs which would probably be possible in a language like Python. It seems to me like it's unavoidable to litter code with type switches which tried to check whether it is a device, car or any number of new models explicitly. In a regular object-oriented language maybe this would be simple polymorphic method call. Any pointer to better design would be appreciated as well.)

sensulib package interface as function param

I am trying to make use of this golang package: https://github.com/jefflaplante/sensulib
I want to get all the events from the sensu API. I've followed the example code and modified it slightly so it works:
config := sensu.DefaultConfig()
config.Address = "sensu-url:port"
onfig.Username = "admin"
config.Password = "password"
// Create a new API Client
sensuAPI, err := sensu.NewAPIClient(config)
if err != nil {
// do some stuff
}
Now I want to grab all the events from the API, and there's a neat function do to that, GetEvents
However, the function expects a parameter, out, which is an interface. Here's the function itself:
func (c *API) GetEvents(out interface{}) (*http.Response, error) {
resp, err := c.get(EventsURI, out)
return resp, err
}
What exactly is it expecting me to pass here? I guess the function wants to write the results to something, but I have no idea what I'm supposed to call the function with
I've read a bunch of stuff about interfaces, but it's not getting any clearer. Any help would be appreciated!
The empty interface interface{} is just a placeholder for anything. It's roughly the equivalent of object in Java or C# for instance. It means the library doesn't care about the type of the parameter you are going to pass. For hints about what the library does with that parameter, I suggest you look at the source code.

calling function from map[string]interface{} by giving key

I want to be able to pass function name to gin.Engine route handler. I have the following code;
// status service
type StatusService struct {
App *gin.Engine
}
func (s *StatusService) Ping(ctx *gin.Context) {
ctx.JSON(200, gin.H{
"message": "pong",
})
}
app := gin.Default()
// define services
statusService := &services.StatusService{
App: app,
}
ss := make(map[string]interface{})
ss["auth"] = statusService
app.GET("/ping", ss["auth"].Ping)
The compiler gives the following error;
./app.go:60: ss["auth"].Ping undefined (type interface {} has no field or method Ping)
Any ideas about how to fix that?
interface{} works for just about any type, the problem is that you've failed to assert which type the thing is. In this case you would need something like... ss["auth"].(*StatusService).Ping(myCtxInstance). This answer has a more thorough example which I'll refrain from duplicating; Go map of functions
Couple other things; if your real use case is as simple as your example just stop what you're doing and add func(ctx *gin.Context) as a second argument. Also, depending on the nature of the functions you want to use (like if they all have the same args and return types) then you might want to use a second arg for the delegates, map[string]func(argumentType) would be more appropriate.
The design you currently have pushes all errors to runtime which obviously is less desirable than the compile time safety you'd get from either of the options I touched on above.

Defining an interface method with interface return type

TLDR Here is a playground that demonstrates the issue if you try to run it: https://play.golang.org/p/myQtUVg1iq
I am making a REST API and have many types of resources that can be retrieved via a GET request
GET http://localhost/api/users
GET http://localhost/api/groups
I have a models package which abstracts how the different resources are implemented:
func(m *UserManager) Get() []Users {
// Internal logic, assume returns correct results
}
func(m *GroupManager) Get() []Groups {
// Internal logic, assume returns correct results
}
A routes file setups all the routes and handlers:
users := models.UserManager{}
groups := models.GroupManager{}
func GetUsersHandler (w http.ResponseWriter, r *http.Request) {
users := users.Get()
// Implementation details, writing to w as JSON
}
func GetGroupsHandler (w http.ResponseWriter, r *http.Request) {
groups := groups.Get()
// Implementation details, writing to w as JSON
}
func registerRoutes(r *mux.Router) {
r.handleFunc("/api/users", GetUsersHandler).Method("GET")
r.handleFunc("/api/groups", GetGroupsHandler).Method("GET")
}
I am trying to make this more generic by creating an interface and then only needing a single GetHandler. Something like this:
type Getter interface {
Get() []interface{}
}
func GetHandler(g Getter) {
return func(w http.ResponseWriter, r *http.Request) {
results := g.Get()
// Implementation details, writing to w as JSON
}
}
func registerRoutes(r *mux.Router) {
r.handleFunc("/api/users", GetHandler(&users)).Method("GET")
r.handleFunc("/api/groups", GetHandler(&groups)).Method("GET")
}
This is really close to working, the only problem is the return type from the models is a specific object type, but the interface just uses the interface return type. Is there any way to solve this without making the models return []interface{}?
https://play.golang.org/p/myQtUVg1iq
Try not to approach the problem like you would other OOP languages. You can't have covariant containers in Go, so you either have to use an empty interface{}, or you have to structure your program differently.
If your Get methods are different and you want to group types in an interface, use another method (sometimes we even have noop methods just for interfaces), or just pass in users or groups as an interface{}. You'll need to do a type switch or assertion at some point in the call chain anyway, and once you know what type it is you can handle it accordingly.
It's hard to tell without more code, but in this case, the easiest path may just be to have each type be an http.Handler itself, and it can dispatch accordingly.
I ended up avoiding this problem entirely and instead of trying to reduce the amount of code I am using the new go generate feature in Go 1.4 to create the code that is necessary for each resource.

Resources