All variations of a number - algorithm

Im trying to find all the possible variations of a number in the form of:
'1_2_3_4' where _ is a number between 0 to 9.
I was wondering what is the best approach to this problem.

This seems like the simplest method:
static void printPerms()
{
int n = 1020304;
for (int i = 0; i <= 9; i++, n += 90000)
for (int j = 0; j <= 9; j++, n += 900)
for (int k = 0; k <= 9; k++, n += 10)
System.out.println(n);
}
Or even this, which has a lovely symmetry:
static void printPerms()
{
int n = 1020304;
for (int ni = n + 900000; n <= ni; n += 90000)
for (int nj = n + 9000; n <= nj; n += 900)
for (int nk = n + 90; n <= nk; n += 10)
System.out.println(n);
}

import java.util.*;
public class Solution {
public static void main(String[] args){
int[] fillable = {1,-1,2,-1,3,-1,4};
for(int i=0;i<=9;++i){
for(int j=0;j<=9;++j){
for(int k=0;k<=9;++k){
fillable[1] = i;
fillable[3] = j;
fillable[5] = k;
System.out.println(Arrays.toString(fillable));
}
}
}
}
}
OUTPUT:
[1, 0, 2, 0, 3, 0, 4]
[1, 0, 2, 0, 3, 1, 4]
[1, 0, 2, 0, 3, 2, 4]
[1, 0, 2, 0, 3, 3, 4]
[1, 0, 2, 0, 3, 4, 4]
[1, 0, 2, 0, 3, 5, 4]
[1, 0, 2, 0, 3, 6, 4]
.
.
.
.
Time Complexity: O(10^n) where n is no. of places to fill in. If 3 empty places if fixed, then it is O(1).
Space Complexity: O(1)
Note: There is no better way to do this. You have to go through each and every combination.

Python style, assuming ASCII code representation:
n= "1020304"
while True:
n[5]+= 1
if n[5] == ':':
n[5]= '0'
n[3]+= 1
if n[3] == ':':
n[3]= '0'
n[1]+= 1
if n[1] == ':'=
break

Related

How to get the number of the Subarray with at least K different numbers?

The question is:
"Given an array A only contains integers Return the number of subarrays that contain at least k different numbers. Subarrays cannot be duplicated."
Example:
input array = {1, 2, 3, 4, 2} k = 3
output: 4
Explanation:
the number of the Subarray with at least K different numbers should be 4,
which are [1, 2, 3] [2, 3, 4] [3, 4, 2] [1, 2, 3, 4]
Right now what I can do is just find about the number of the subarray with exactly K different numbers:
class Solution {
public int subarraysWithKDistinct(int[] A, int K) {
return atMostK(A, K) - atMostK(A, K - 1);
}
private int atMostK(int[] A, int K) {
int i = 0, res = 0;
Map<Integer, Integer> count = new HashMap<>();
for (int j = 0; j < A.length; ++j) {
if (count.getOrDefault(A[j], 0) == 0) K--;
count.put(A[j], count.getOrDefault(A[j], 0) + 1);
while (K < 0) {
count.put(A[i], count.get(A[i]) - 1);
if (count.get(A[i]) == 0) K++;
i++;
}
res += j - i + 1;
}
return res;
}
}
But when the input be:
array = {1, 2, 3, 4, 2} k = 2
my code will not work correctly, but I don't know where to change. Any thoughts? Thanks!
Update: thanks to #MBo and others' answers, I used 2 pointers to fix this problem, but still cannot get the right answer with:
array = {1, 2, 3, 4, 2} k = 3 -> output: 6 (should be 4)
It looks like there are some duplicated substrings be counted, but I don't know how to fix it.
class Solution {
public static void main(String[] args) {
int[] A = {1, 2, 3, 4, 2};
int k = 3;
int res = helper(A, k);
System.out.println(res);
// output is 6, but should be 4
}
private static int helper(int[] A, int k) {
if (A == null || A.length == 0) return 0;
int n = A.length;
int res = 0;
int differentNumbers = 0;
Map<Integer, Integer> counter = new HashMap<>();
int j = 0; // j - 1 is the right point
for (int i = 0; i < n; i ++) {
while (j < n && differentNumbers < k) {
int numOfThisNumber = counter.getOrDefault(A[j], 0);
counter.put(A[j], numOfThisNumber + 1);
if (counter.get(A[j]) == 1) {
differentNumbers ++;
}
j ++;
}
if (differentNumbers == k) {
res += n - j + 1;
}
counter.put(A[i], counter.get(A[i]) - 1);
if (counter.get(A[i]) == 0) {
differentNumbers --;
}
}
return res;
}
}
You can combine your hashmap approach with method of two pointers (indices).
Set both indices into 0 and move right one, updating hashmap counts for values at the right end of interval until hashmap size reaches K. Fix right index.
Now move left index, decreasing counts corresponding to the values at left end. Before every step (including left=0) add size-right to result, because all subarrays starting from left and ending after right, do contain needed number of elements.
When some count becomes 0, remove value from hashmap, and fix left index.
Repeat with right index and so on.

Algorithms: distribute elements far away from each other

I have an array of sorted integers. Given an integer N i need to place N largest elements further away from each other so that they have maximum space between each other. The remaining elements should be placed between these big items. For example, array of 10 with N=3 would result in [0, 5, 8, 2, 6, 9, 3, 7, 10, 4].
public static void main(String[] args) {
int[] start = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
int[] end = new int[10];
int N = 4;
int step = Math.round(start.length / N );
int y = 0;
int count = 0;
for (int i = 0; i < step; i++) {
for (int j = i; j<start.length; j = j + step) {
//System.out.println(j + " " + i);
if (count < start.length && start[count] != 0) {
end[j] = start[count];
count++;
}
}
}
System.out.println(end.toString());
}
You have an array of K elements. You have N max numbers you need to distribute. Then:
Step := K/N (removing the remainder)
Take any number from N maximum and insert it at Step/2 position.
Take other maximum numbers and insert it after the previous inserted maximum number at Step distance.
Giving [1,2,3,4,5,6,7,8,9,10]. So K = 10, N = 3. Then Step = 3. So the first maximum is placed at 3/2 position
[1,10,2,3,4,5,6,7,8,9]
Then other 2 are put at 3 distance from each other:
[1,10,2,3,9,4,5,8,6,7]
The code:
std::vector<int> Distribute(std::vector<int> aSource, int aNumber)
{
auto step = aSource.size() / aNumber; // Note integer dividing.
for (int i = 0; i < aNumber; ++i)
{
auto place = aSource.end() - i * step - step / 2;
aSource.insert(place, aSource.front());
aSource.erase(aSource.begin());
}
return aSource;
}
int main()
{
std::vector<int> vec{10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10};
auto res = Distribute(vec, 4);
for (auto e : res)
{
std::cout << e << ", ";
}
std::cout << std::endl;
}
Output:
6, 5, 4, 7, 3, 2, 1, 0, 8, -1, -2, -3, -4, 9, -5, -6, -7, -8, 10, -9, -10,

Chess - algorithm, designate jumps

I have a question.
We have unlimited board, How to measure the amount of a half where you may find yourself jumper after n jumps?
For example:
after one jump we have 8 boxes
after two jump we have 33 boxes
#include<bits/stdc++.h>
using namespace std;
int sign(int n)
{
if(n > 0 )return 1;
else if(n == 0) return 0;
else return -1;
}
int main()
{
int t, n;
cin >> t;
for(int i = 0; i < t; i++)
{
cin >> n;
cout << 7*n*n + 4*n - 3*sign(n-2)*sign(n-1) << endl;
}
}
//f(n) = 7*n^2 + 4*n - 3*Sign[(n - 2)(n - 1)]
What's wrong?
My code return 11, for n = 1, should return 8
ok, working!
By writing a simple python program:
dx = [-2, -2, -1, -1, 1, 1, 2, 2]
dy = [-1, 1, -2, 2, -2, 2, -1, 1]
def calc(level):
cell_list = set([(0,0)])
for _ in range(level):
new_cell_list = set()
for x, y in cell_list:
for k in range(len(dx)):
new_cell_list.add((x+dx[k], y+dy[k]))
cell_list = new_cell_list
return len(cell_list)
for level in range(1, 10):
print(calc(level), end=', ')
we get
8, 33, 76, 129, 196, 277, 372, 481, 604
which is A118312. The formula is:
f(n) = 7*n^2 + 4*n - 3 + 4*Sign[(n - 2)(n - 1)]
where
1 n > 0
Sign(n) = 0 n == 0
-1 n < 0
This is the same as:
f(0) = 1
f(1) = 8
f(2) = 33
f(n) = 7*n^2 + 4*n + 1, n >= 3

Algorithm puzzle: minimum cost for allow all persons standing on a line to communicate with each other

I have a algorithm design puzzle that I could not solve.
The puzzle is formulated like this: There are N persons standing on a number line, each of them maybe standing on any integer number on that line. Multiple persons may stand on the same number. For any two persons to be able to communicate with each other, the distance between them should be less than K. The goal is to move them so that each pair of two persons can communicate each other (possibly via other people). In other words, we need to move them so that the distance between any neighboring two persons is smaller than K.
Question: What is the minimum number of total moves? It feels like this falls into greedy algorithm family or dynamic programming. Any hints are appreciated!
We can do the following in O(n):
Calculate the cost of moving all people to the right of person i towards person i at an acceptable distance:
costRight(A[i]) = costRight(A[i+1]) + (A[i+1] - A[i] - k + 1) * count of people to the right
K = 3; A = { 0, 3, 11, 17, 21}
costRight = {32, 28, 10, 2, 0}
Calculate the cost of moving all people to the left of person i towards person i at an acceptable distance:
costLeft(A[i]) = costLeft(A[i-1]) + (A[i] - A[i-1] - k + 1) * count of people to the left
K = 3; A = { 0, 3, 11, 17, 21}
costLeft = { 0, 1, 13, 25, 33}
costRight = {32, 28, 10, 2, 0}
Now that we have cost from both directions we can do this in O(n):
minCost = min(costRight + costLeft) for all A[i]
minCost = min(32 + 0, 28 + 1, 13 + 10, 25 + 2, 33 + 0) = 23
But sometimes that's no enough:
K = 3; A = { 0, 0, 1, 8, 8}
carry: -2 -4 3
costLeft = { 0, 0, 0, 11, 11}
carry: -3 5 -2
costRight = { 8, 8, 8, 0, 0}
The optimum is neither 11 nor 8. Test the current best by moving towards the greatest saving:
move 1 to 2, cost = 1
K = 3; A = { 0, 0, 2, 8, 8}
carry: -2 -2 -10
costLeft = { 0, 0, 0, 10, 10}
carry: -2 -2
costRight = { 6, 6, 6, 0, 0}
minCost = 1 + min(0 + 6, 0 + 6, 0 + 6, 10 + 0, 10 + 0) = 1 + 6 = 7
Not quite sure how to formularize this efficiently.
Here is a greedy algorithm written in Java, but I don't know if it gives the optimal solution in every case. Also it is more a proof of concept, there is some room for optimizations.
It is based on the fact that two neighbouring persons must not be more than K apart, the next neighbour must not be more than 2K away and so on. In each step we move the person that "violates these constraints most". The details of this calculation are in method calcForce.
package so;
import java.util.Arrays;
public class Main {
public static void main(String args[]) {
int[] position = new int[] {0, 0, 5, 11, 17, 23};
int k = 5;
solve(position, k);
}
private static void solve(int[] position, int k) {
if (!sorted(position)) {
throw new IllegalArgumentException("positions must be sorted");
}
int[] force = new int[position.length];
int steps = 0;
while (calcForce(position, k, force)) {
int mp = -1;
int mv = -1;
for (int i = 0; i < force.length; i++) {
if (mv < Math.abs(force[i])) {
mv = Math.abs(force[i]);
mp = i;
}
}
System.out.printf("move %d to the %s%n", mp, force[mp] > 0 ? "right" : "left");
if (force[mp] > 0) {
position[mp]++;
} else {
position[mp]--;
}
steps++;
}
System.out.printf("total: %d steps%n", steps);
}
private static boolean calcForce(int[] position, int k, int[] force) {
boolean commProblem = false;
Arrays.fill(force, 0);
for (int i = 0; i < position.length - 1; i++) {
for (int j = i + 1; j < position.length; j++) {
int f = position[j] - position[i] - (j - i) * k;
if (f > 0) {
force[i] += f;
force[j] -= f;
commProblem = true;
}
}
}
return commProblem;
}
private static boolean sorted(int[] position) {
for (int i = 0; i < position.length - 1; i++) {
if (position[i] > position[i+1]) {
return false;
}
}
return true;
}
}

Find longest increasing sequence

You are given a sequence of numbers and you need to find a longest increasing subsequence from the given input(not necessary continuous).
I found the link to this(Longest increasing subsequence on Wikipedia) but need more explanation.
If anyone could help me understand the O(n log n) implementation, that will be really helpful. If you could explain the algo with an example, that will be really appreciated.
I saw the other posts as well and what I did not understand is:
L = 0
for i = 1, 2, ... n:
binary search for the largest positive j ≤ L such that X[M[j]] < X[i] (or set j = 0 if no such value exists)
above statement, from where to start binary search? how to initialize M[], X[]?
A simpler problem is to find the length of the longest increasing subsequence. You can focus on understanding that problem first. The only difference in the algorithm is that it doesn't use the P array.
x is the input of a sequence, so it can be initialized as:
x = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
m keeps track of the best subsequence of each length found so far. The best is the one with the smallest ending value (allowing a wider range of values to be added after it). The length and ending value is the only data needed to be stored for each subsequence.
Each element of m represents a subsequence. For m[j],
j is the length of the subsequence.
m[j] is the index (in x) of the last element of the subsequence.
so, x[m[j]] is the value of the last element of the subsequence.
L is the length of the longest subsequence found so far. The first L values of m are valid, the rest are uninitialized. m can start with the first element being 0, the rest uninitialized. L increases as the algorithm runs, and so does the number of initialized values of m.
Here's an example run. x[i], and m at the end of each iteration is given (but values of the sequence are used instead of indexes).
The search in each iteration is looking for where to place x[i]. It should be as far to the right as possible (to get the longest sequence), and be greater than the value to its left (so it's an increasing sequence).
0: m = [0, 0] - ([0] is a subsequence of length 1.)
8: m = [0, 0, 8] - (8 can be added after [0] to get a sequence of length 2.)
4: m = [0, 0, 4] - (4 is better than 8. This can be added after [0] instead.)
12: m = [0, 0, 4, 12] - (12 can be added after [...4])
2: m = [0, 0, 2, 12] - (2 can be added after [0] instead of 4.)
10: m = [0, 0, 2, 10]
6: m = [0, 0, 2, 6]
14: m = [0, 0, 2, 6, 14]
1: m = [0, 0, 1, 6, 14]
9: m = [0, 0, 1, 6, 9]
5: m = [0, 0, 1, 5, 9]
13: m = [0, 0, 1, 5, 9, 13]
3: m = [0, 0, 1, 3, 9, 13]
11: m = [0, 0, 1, 3, 9, 11]
7: m = [0, 0, 1, 3, 7, 11]
15: m = [0, 0, 1, 3, 7, 11, 15]
Now we know there is a subsequence of length 6, ending in 15. The actual values in the subsequence can be found by storing them in the P array during the loop.
Retrieving the best sub-sequence:
P stores the previous element in the longest subsequence (as an index of x), for each number, and is updated as the algorithm advances. For example, when we process 8, we know it comes after 0, so store the fact that 8 is after 0 in P. You can work backwards from the last number like a linked-list to get the whole sequence.
So for each number we know the number that came before it. To find the subsequence ending in 7, we look at P and see that:
7 is after 3
3 is after 1
1 is after 0
So we have the subsequence [0, 1, 3, 7].
The subsequences ending in 7 or 15 share some numbers:
15 is after 11
11 is after 9
9 is after 6
6 is after 2
2 is after 0
So we have the subsequences [0, 2, 6, 9, 11], and [0, 2, 6, 9, 11, 15] (the longest increasing subsequence)
One of the best explanation to this problem is given by MIT site.
http://people.csail.mit.edu/bdean/6.046/dp/
I hope it will clear all your doubts.
based on FJB's answer, java implementation:
public class Lis {
private static int[] findLis(int[] arr) {
int[] is = new int[arr.length];
int index = 0;
is[0] = index;
for (int i = 1; i < arr.length; i++) {
if (arr[i] < arr[is[index]]) {
for (int j = 0; j <= index; j++) {
if (arr[i] < arr[is[j]]) {
is[j] = i;
break;
}
}
} else if (arr[i] == arr[is[index]]) {
} else {
is[++index] = i;
}
}
int[] lis = new int[index + 1];
lis[index] = arr[is[index]];
for (int i = index - 1; i >= 0; i--) {
if (is[i] < is[i + 1]) {
lis[i] = arr[is[i]];
} else {
for (int j = is[i + 1] - 1; j >= 0; j--) {
if (arr[j] > arr[is[i]] && arr[j] < arr[is[i + 1]]) {
lis[i] = arr[j];
is[i] = j;
break;
}
}
}
}
return lis;
}
public static void main(String[] args) {
int[] arr = new int[] { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11,
7, 15 };
for (int i : findLis(arr)) {
System.out.print(i + "-");
}
System.out.println();
arr = new int[] { 1, 9, 3, 8, 11, 4, 5, 6, 4, 19, 7, 1, 7 };
for (int i : findLis(arr)) {
System.out.print(i + "-");
}
System.out.println();
}
}
Below is the O(NLogN) longest increasing subsequence implementation:
// search for the index which can be replaced by the X. as the index can't be
//0 or end (because if 0 then replace in the findLIS() and if it's greater than the
//current maximum the just append)of the array "result" so most of the boundary
//conditions are not required.
public static int search(int[] result, int p, int r, int x)
{
if(p > r) return -1;
int q = (p+r)/2;
if(result[q] < x && result[q+1]>x)
{
return q+1;
}
else if(result[q] > x)
{
return search(result, p, q, x);
}
else
{
return search(result, q+1, r, x);
}
}
public static int findLIS(int[] a)
{
int[] result = new int[a.length];
result[0] = a[0];
int index = 0;
for(int i=1; i<a.length; i++)
{
int no = a[i];
if(no < result[0]) // replacing the min number
{
result[0] = no;
}
else if(no > result[index])//if the number is bigger then the current big then append
{
result[++index] = no;
}
else
{
int c = search(result, 0, index, no);
result[c] = no;
}
}
return index+1;
}
Late to the party, but here's a JavaScript implementation to go along with the others.. :)
var findLongestSubsequence = function(array) {
var longestPartialSubsequences = [];
var longestSubsequenceOverAll = [];
for (var i = 0; i < array.length; i++) {
var valueAtI = array[i];
var subsequenceEndingAtI = [];
for (var j = 0; j < i; j++) {
var subsequenceEndingAtJ = longestPartialSubsequences[j];
var valueAtJ = array[j];
if (valueAtJ < valueAtI && subsequenceEndingAtJ.length > subsequenceEndingAtI.length) {
subsequenceEndingAtI = subsequenceEndingAtJ;
}
}
longestPartialSubsequences[i] = subsequenceEndingAtI.concat();
longestPartialSubsequences[i].push(valueAtI);
if (longestPartialSubsequences[i].length > longestSubsequenceOverAll.length) {
longestSubsequenceOverAll = longestPartialSubsequences[i];
}
}
return longestSubsequenceOverAll;
};
Based on #fgb 's answer, I implemented the algorithm using c++ to find the longest strictly increasing sub-sequence. Hope this will be somewhat helpful.
M[i] is the index of the last element of the sequence whose length is i, P[i] is the index of the previous element of i in the sequence, which is used to print the whole sequence.
main() is used to run the simple test case: {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}.
#include <vector>
using std::vector;
int LIS(const vector<int> &v) {
int size = v.size(), max_len = 1;
// M[i] is the index of the last element of the sequence whose length is i
int *M = new int[size];
// P[i] is the index of the previous element of i in the sequence, which is used to print the whole sequence
int *P = new int[size];
M[0] = 0; P[0] = -1;
for (int i = 1; i < size; ++i) {
if (v[i] > v[M[max_len - 1]]) {
M[max_len] = i;
P[i] = M[max_len - 1];
++max_len;
continue;
}
// Find the position to insert i using binary search
int lo = 0, hi = max_len - 1;
while (lo <= hi) {
int mid = lo + ((hi - lo) >> 1);
if (v[i] < v[M[mid]]) {
hi = mid - 1;
} else if (v[i] > v[M[mid]]) {
lo = mid + 1;
} else {
lo = mid;
break;
}
}
P[i] = P[M[lo]]; // Modify the previous pointer
M[lo] = i;
}
// Print the whole subsequence
int i = M[max_len - 1];
while (i >= 0) {
printf("%d ", v[i]);
i = P[i];
}
printf("\n");
delete[] M, delete[] P;
return max_len;
}
int main(int argc, char* argv[]) {
int data[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};
vector<int> v;
v.insert(v.end(), data, data + sizeof(data) / sizeof(int));
LIS(v);
return 0;
}
The O(N lg N) solution comes from patience sorting of playing card. I found this from my code comment and hence sharing here. I believe it would be really easier to understand for everyone how it works. Also you can find all possible longest increasing sub-sequence list if you understand well.
https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf
Code:
vector<int> lisNlgN(vector<int> v) {
int n = v.size();
vector<int> piles = vector<int>(n, INT_MAX);
int maxLen = 0;
for(int i = 0; i < n; i++) {
int pos = lower_bound(piles.begin(), piles.end(), v[i]) - piles.begin();
piles[pos] = v[i];
maxLen = max(maxLen, pos+1); // Plus 1 because of 0-based index.
}
// // Print piles for debug purpose
// for (auto x : piles) cout << x << " ";
// cout << endl;
//
// // Print position for debug purpose
// for (auto x : position) cout << x << " ";
// cout << endl;
vector<int> ret = vector<int>(piles.begin(), piles.begin() + maxLen);
return ret;
}
Code:
vector<vector<int>> allPossibleLIS(vector<int> v) {
struct Card {
int val;
Card* parent = NULL;
Card(int val) {
this->val = val;
}
};
auto comp = [](Card* a, Card* b) {
return a->val < b->val;
};
int n = v.size();
// Convert integers into card node
vector<Card*> cards = vector<Card*>(n);
for (int i = 0; i < n; i++) cards[i] = new Card(v[i]);
vector<Card*> piles = vector<Card*>(n, new Card(INT_MAX));
vector<Card*> lastPileCards;
int maxLen = 0;
for(int i = 0; i < n; i++) {
int pos = lower_bound(piles.begin(), piles.end(), new Card(v[i]), comp) - piles.begin();
piles[pos] = cards[i];
// Link to top card of left pile
if (pos == 0) cards[i]->parent = NULL;
else cards[i]->parent = piles[pos-1];
// Plus 1 because of 0-based index.
if (pos+1 == maxLen) {
lastPileCards.push_back(cards[i]);
} else if (pos+1 > maxLen) {
lastPileCards.clear();
lastPileCards.push_back(cards[i]);
maxLen = pos + 1;
}
}
// Print for debug purpose
// printf("maxLen = %d\n", maxLen);
// printf("Total unique lis list = %d\n", lastPileCards.size());
vector<vector<int>> ret;
for (auto card : lastPileCards) {
vector<int> lis;
Card* c = card;
while (c != NULL) {
lis.push_back(c->val);
c = c->parent;
}
reverse(lis.begin(), lis.end());
ret.push_back(lis);
}
return ret;
}

Resources