Spring boot getbean vs autowired - spring-boot

I am new to spring boot , I have confusion that
#Autowired
serviceDemo serviceDemo
and getting bean from ApplicationContext is same or different?
and if they are same then which method should I use

It depends on what you’re trying to achieve, but to sum it up;
#Bean registers the instance in the application scope. That way it is accessible for later use.
#Autowired actually asks for an instance of a specific bean already registered in the scope.
Although it’s not exactly the same, you can consider for instance the #Service annotation. It tells spring that the class is a service and registers a bean of it in the scope. If you then have a different class, say a controller (#Controller or #RestController depending on your use case) and simply try to access the service you created you’ll most likely get an error thrown at you. This is because although your IDE might recognize the service location, spring doesn’t. Adding the #Autowired sets a “link” between the bean and the instantiation at the time of booting up your app.

Related

Spring injects dependencies in constructor without #Autowired annotation

I'm experimenting with examples from this official Spring tutorials and there is a dependency on this code:
https://github.com/spring-guides/gs-async-method/tree/master/complete
If you look at the code on AppRunner.java class, I have 2 questions:
When server is starting, if I put a breakpoint in this class's constructor, seems like in the constructor, the GitHubLookupService is provided by spring, using the #Service bean that was configured. BUT, there was no #Autowired annotation on the constructor, so how in the world this constructor get called with the right dependency? It was supposed to be null.
Is it an automatic assumption of Spring Boot?
Does Spring see "private field + constructor argument, and it assumes it should look for an appropriate bean?
Is it Spring Framework or Spring boot?
Am I missing something?
As I remember, it was mendatory to provide default constructor to beans / service etc. How come this class (AppRunner) doesn't have a default constructor?
How does Spring knows that it should run the constructor with the argument?
Is it because it is the only constructor?
Starting with Spring 4.3, if a class, which is configured as a Spring bean, has only one constructor, the #Autowired annotation can be omitted and Spring will use that constructor and inject all necessary dependencies.
Regarding the default constructor: You either need the default constructor, a constructor with the #Autowired annotation when you have multiple constructors, or only one constructor in your class with or without the #Autowired annotation.
Read the #Autowired chapter from the official Spring documentation for more information.
Think of it this way... Suppose you have the following component:
#Component
public class FooService {
public FooService(Bar bar) { /*whatever*/ }
}
When Spring is scanning this class, it wants to know how it should go about constructing an instance. It's using reflection so it can get a list of all of the constructors at runtime.
In this case, it is completely unambiguous how Spring must construct this instance. There's only one constructor so there is no decision to be made, and no ambiguity at all.
If you add #Autowired here, you are not narrowing anything down, and you are not giving Spring any extra information to help make its decision - its decision is already made because there is only one candidate.
And so, as a convenience, the Spring team decided #Autowired should be optional. Since its not helping the Spring framework to make a decision, its presence is just noise.
If your component has multiple constructors then you can use #Autowired on one of them to tell Spring "use this one, not that one".

Spring fallback bean implementation

I'm currently trying to configure Spring Boot (using Java Annotations and ComponentScan) for the following scenario:
Scenario
There's an interface MyService.
I want to provide a default implementation for MyService, let's call it MyDefaultService.
If the component scan detects no other implementation for MyService, Spring should instantiate MyDefaultService as a "fallback".
If there is a different implementation of MyService present, let's say MyCustomService, then that bean should always take precedence over MyDefaultService when autowiring a dependency to MyService. In that regard, MyDefaultService should be recessive (as opposed to #Primary).
Ideally, there should not need to be an additional annotation on MyCustomService to have it "override" MyDefaultService.
Ideally, no explicitly implemented factories or factory methods should be required.
Question
The question is: how do I need to annotate the MyDefaultService class in order to achieve this?
What I tried so far to solve the problem
Annotating MyDefaultService with #ConditionalOnMissingBean(MyService.class). Didn't work because MyDefaultService is never used, even if there is no other implementation of MyService.
There is an annotation called #Primarythat solves the problem. However, it needs to reside on MyCustomService, a class that I try to keep free of additional annotations. Essentially, I need the inverse annotation of #Primary on MyDefaultService. However, I couldn't find such an annotation.
Concrete use case
I am developing a service layer in one project, and a different project will implement a web UI layer on top of it. The UI project has a dependency to the service layer project. However, for certain functionalities implemented at the service layer, I need to know which user is currently logged in at the web context. So I have to define a service interface for that in the service layer project, such that it can be implemented by the UI project. However, for testing purposes in the service-layer project, I need a default implementation of that interface. Also, in case that the UI project team forgets to implement this interface, the app should not crash, but instead instantiate the fallback bean and issue a warning.
Thanks & kind regards,
Alan
I suggest writing an implementation of FactoryBean to do this. Your FactoryBean would scan the bean factory looking for beans that implement MyService, and if it finds one it returns that bean from getObject. If it doesn't, then it can instantiate MyDefaultService directly and return that. Your factory bean then gets annotated with #Primary.
So pieces like this (pseudo-code):
public class MyServiceFactory implements FactoryBean<MyService> {
ListableBeanFactory beanFactory;
public MyService getObject() {
Map beans = beanFactory.getBeansOfType(MyService.class)
if (beans.isEmpty())
return new MyDefaultService(); // plus args, obviously
else
return get_some_bean_from_the_map
}
}
and then
#Primary
#Bean
public MyServiceFactory MyServiceFactory() {
return new MyServiceFactory();
}
Spring will automatically handle the factory bean (i.e. it will make the MyService object available as a bean for injection like normal.
This solution doesn't require any special magic, and it's fairly obvious how it works. You can also handle errant cases such as multiple MyService beans being declared.

injecting spring beans into non-singleton classes

is it possible to inject spring beans into a polling filter class (FClass) controlled by a scheduler job?
i don't quite understand how singleton applies here.
i understand spring beans are singleton so in order to inject the spring beans into class FClass. i need to define FClass as a bean and add the DI as property etc..
so how do i know if FClass should be a singleton? i assume only classes that are singletons can be created and beans and have DI done to them.
my problem is :
i need to be able to inject my facade bean xfacade into FClass. x_facacde handles the dao object. it has Y_dao and a Z_hibernate session beans injected as DI.
when i tried to create a spring bean of StatusPollingFilter (FClass) and injected the facade bean - i got a null and the setter is never called for the injection in debug mode.
the problem:
i'm thought it might be something to do with the thread / scheduler nature of StatusPollingFilter, and since spring beans are singletons it might not work due to that.
i'm thinking of creating a factory for the StatusPollingFilter (FClass). but need to know if this is correct thing and i'm on right track before i do too much work and realize even that doesn't work as the problem might be somewhere else. ideally i just want to update a table in the easiest possible way. but i have to use hibernate as the DAO exists but hibernate is configured using
<bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
with /hibernate/TopoObject.hbm.xml
files.
so no matter how i try this i always get null pointer exception on session or injected facade bean.
reading some of the QA's here seems like because StatusPollingFilter is instantiated using the scheduler and not spring it cant be aware of the DI beans. so would the above factory pattern help here.
I may have an additional problem but i'll cross that bridge when i come to it. but just to mention briefly, in case anyone is aware of issues that i might hit ... not sure what / how the scheduler would invoke the factory for an instance as its all controlled by 3rd party api - which invokes a StatusPollingFilter but i'm assuming if i pass in the factory as the class and parameter it would find its way through... but initial part is the main question. please ignore the latter waffle. thanks in advance.
Actually :
i assume only classes that are singletons can be created
is where you are wrong.
A bean is just a class that you let spring instantiate. By default, they are created as singleton but you can specify the scope on your bean using the attribute scope (quite surprisingly). The value you can specify are those specified in the documentation here
So one thing you have to be careful with is the injection of beans scoped as prototype or request into singletons.
having read more - i have come across the ans.
because the StatusPollingFilter object is under control of scheduler (i knew that scheduler had something to do with it) then it is unaware of the spring beans which is why i keep getting null when i try injecting the bean.
i created a class:
ApplicationContextProvider implements ApplicationContextAware
added static access
private static ApplicationContext appContext;
did a setter for it :
public void setApplicationContext(ApplicationContext context)
{
appContext = context;
}
and added
public static Object getBean(String beanName) throws BeansException
{
return appContext.getBean(beanName);
}
used in code as :
EvoTAMDAOFacade evoDao = (EvoTAMDAOFacade) ApplicationContextProvider.getBean("evoDaoFacade");
i now have access to the facade bean and all injected beans into facade.
i still have an issue with hibernate session but thats prob due to some other issue.
pt here is i don't have access to the bean as its not in control of the spring container so i needed to somehow get it , probably could have done it via the factory method but why mess around when there a simpler way.
thanks for help by anyone who may have posted or tried to understand my problem.

Autowired spring bean is not a proxy

I'm working on a very small application connecting to a MySQL database.
I'm trying to create table record but getting 'no transaction in progress'.
I have all the right stuff in place:
a service interface MyService and its implementation MyServiceImpl
I have annotated the service impl with #Service
In the controller I used the interface name for the field #Autowired MyService
I have the correct transaction configuration as it was originally generated by roo
There is a public method MyService.create(...) which MyServiceImpl implements
But,
When I remote debug and inspect the controller's myService field what I see is something like
com.some.package.services.MyService#12345 (and NOT something like $Proxy73) which to me is not right, because what should be autowired is the proxy not he target bean (which is what I think this is). If I'm correct then it makes sense that there is no transaction as the annotation would only kick in when invoking a public method annotated with #Transactional on a proxy.
Please tell me why is spring injecting the target bean in this setup.
Thanks
If you have AspectJ-enabled transaction management (<tx:annotation-driven mode="aspectj" .../>) application of transactions happens in-place in the same class, either during build (compile-time weaving) or on startup (load-time weaving).
No new classes are created (like when using cglib) and no proxies (like with ordinary interface-based AOP in Spring). Instead bytecode of MyServiceImpl was modified directly without you even noticing. Unfortunately the only way to see AOP is to decompile your classes. If you use javap -c MyServiceImpl you'll find plenty of references to Spring transaction layer.
If you are using Spring MVC, make sure to scan specific controller classes alone in servlet context file. Otherwise it will scan 2 times and transaction is not available on the application context.

How does spring self injection works with #Resource?

This is a question to understand spring internals. There are a couple of workarounds suggested for self injection of a bean in spring because #Autowired doesn't work. Here are few threads. I would like to know the reason why and how does self injection work technically with #Resource annotation?
#Service(value = "someService")
public class UserService implements Service{
#Resource(name = "someService")
private Service self;
}
Any links to the spring source code would be appreciated. Thanks.
From another thread I got a response which seems fairly ok. Basically it states that spring specially adds defensive checks for handling #Autowired beans but #Resource beans bypass it and hence it works.
I don't know how exactly spring handles it, but here are a few options (the CDI specification uses these for example):
incomplete instances. When beans are instantiated and put in the context, their status is set as 'incomplete' - that is, their instance exists but their dependencies are not injected. Thus, first beans are instantiated, put in the context, and on the next stage their dependencies are injected. This makes the above case trivial - the container first create the instance and then, for each injection point, gets the desired bean from the context - itself, in this case
proxies. A proxy is created for each bean, so that it has beans without actually having instantiated the beans. It creates the proxies (by interface/concrete class), injects them into one another, and passes proxies around when needed. Finally each proxy gets its actual bean. This is perhaps not the case above, because this is used by CDI to handle circular constructor injection.

Resources