Related
I've been trying to create a generalized Gradient Noise generator (which doesn't use the hash method to get gradients). The code is below:
class GradientNoise {
std::uint64_t m_seed;
std::uniform_int_distribution<std::uint8_t> distribution;
const std::array<glm::vec2, 4> vector_choice = {glm::vec2(1.0, 1.0), glm::vec2(-1.0, 1.0), glm::vec2(1.0, -1.0),
glm::vec2(-1.0, -1.0)};
public:
GradientNoise(uint64_t seed) {
m_seed = seed;
distribution = std::uniform_int_distribution<std::uint8_t>(0, 3);
}
// 0 -> 1
// just passes the value through, origionally was perlin noise activation
double nonLinearActivationFunction(double value) {
//return value * value * value * (value * (value * 6.0 - 15.0) + 10.0);
return value;
}
// 0 -> 1
//cosine interpolation
double interpolate(double a, double b, double t) {
double mu2 = (1 - cos(t * M_PI)) / 2;
return (a * (1 - mu2) + b * mu2);
}
double noise(double x, double y) {
std::mt19937_64 rng;
//first get the bottom left corner associated
// with these coordinates
int corner_x = std::floor(x);
int corner_y = std::floor(y);
// then get the respective distance from that corner
double dist_x = x - corner_x;
double dist_y = y - corner_y;
double corner_0_contrib; // bottom left
double corner_1_contrib; // top left
double corner_2_contrib; // top right
double corner_3_contrib; // bottom right
std::uint64_t s1 = ((std::uint64_t(corner_x) << 32) + std::uint64_t(corner_y) + m_seed);
std::uint64_t s2 = ((std::uint64_t(corner_x) << 32) + std::uint64_t(corner_y + 1) + m_seed);
std::uint64_t s3 = ((std::uint64_t(corner_x + 1) << 32) + std::uint64_t(corner_y + 1) + m_seed);
std::uint64_t s4 = ((std::uint64_t(corner_x + 1) << 32) + std::uint64_t(corner_y) + m_seed);
// each xy pair turns into distance vector from respective corner, corner zero is our starting corner (bottom
// left)
rng.seed(s1);
corner_0_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x, dist_y});
rng.seed(s2);
corner_1_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x, dist_y - 1});
rng.seed(s3);
corner_2_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x - 1, dist_y - 1});
rng.seed(s4);
corner_3_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x - 1, dist_y});
double u = nonLinearActivationFunction(dist_x);
double v = nonLinearActivationFunction(dist_y);
double x_bottom = interpolate(corner_0_contrib, corner_3_contrib, u);
double x_top = interpolate(corner_1_contrib, corner_2_contrib, u);
double total_xy = interpolate(x_bottom, x_top, v);
return total_xy;
}
};
I then generate an OpenGL texture to display with like this:
int width = 1024;
int height = 1024;
unsigned char *temp_texture = new unsigned char[width*height * 4];
double octaves[5] = {2,4,8,16,32};
for( int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
double d_noise = 0;
d_noise += temp_1.noise(j/octaves[0], i/octaves[0]);
d_noise += temp_1.noise(j/octaves[1], i/octaves[1]);
d_noise += temp_1.noise(j/octaves[2], i/octaves[2]);
d_noise += temp_1.noise(j/octaves[3], i/octaves[3]);
d_noise += temp_1.noise(j/octaves[4], i/octaves[4]);
d_noise/=5;
uint8_t noise = static_cast<uint8_t>(((d_noise * 128.0) + 128.0));
temp_texture[j*4 + (i * width * 4) + 0] = (noise);
temp_texture[j*4 + (i * width * 4) + 1] = (noise);
temp_texture[j*4 + (i * width * 4) + 2] = (noise);
temp_texture[j*4 + (i * width * 4) + 3] = (255);
}
}
Which give good results:
But gprof is telling me that the Mersenne twister is taking up 62.4% of my time and growing with larger textures. Nothing else individual takes any where near as much time. While the Mersenne twister is fast after initialization, the fact that I initialize it every time I use it seems to make it pretty slow.
This initialization is 100% required for this to make sure that the same x and y generates the same gradient at each integer point (so you need either a hash function or seed the RNG each time).
I attempted to change the PRNG to both the linear congruential generator and Xorshiftplus, and while both ran orders of magnitude faster, they gave odd results:
LCG (one time, then running 5 times before using)
Xorshiftplus
After one iteration
After 10,000 iterations.
I've tried:
Running the generator several times before utilizing output, this results in slow execution or simply different artifacts.
Using the output of two consecutive runs after initial seed to seed the PRNG again and use the value after wards. No difference in result.
What is happening? What can i do to get faster results that are of the same quality as the mersenne twister?
OK BIG UPDATE:
I don't know why this works, I know it has something to do with the prime number utilized, but after messing around a bit, it appears that the following works:
Step 1, incorporate the x and y values as seeds separately (and incorporate some other offset value or additional seed value with them, this number should be a prime/non trivial factor)
Step 2, Use those two seed results into seeding the generator again back into the function (so like geza said, the seeds made were bad)
Step 3, when getting the result, instead of using modulo number of items (4) trying to get, or & 3, modulo the result by a prime number first then apply & 3. I'm not sure if the prime being a mersenne prime matters or not.
Here is the result with prime = 257 and xorshiftplus being used! (note I used 2048 by 2048 for this one, the others were 256 by 256)
LCG is known to be inadequate for your purpose.
Xorshift128+'s results are bad, because it needs good seeding. And providing good seeding defeats the whole purpose of using it. I don't recommend this.
However, I recommend using an integer hash. For example, one from Bob's page.
Here's a result of the first hash of that page, it looks OK to me, and it is fast (I think it is much faster than Mersenne Twister):
Here's the code I've written to generate this:
#include <cmath>
#include <stdio.h>
unsigned int hash(unsigned int a) {
a = (a ^ 61) ^ (a >> 16);
a = a + (a << 3);
a = a ^ (a >> 4);
a = a * 0x27d4eb2d;
a = a ^ (a >> 15);
return a;
}
unsigned int ivalue(int x, int y) {
return hash(y<<16|x)&0xff;
}
float smooth(float x) {
return 6*x*x*x*x*x - 15*x*x*x*x + 10*x*x*x;
}
float value(float x, float y) {
int ix = floor(x);
int iy = floor(y);
float fx = smooth(x-ix);
float fy = smooth(y-iy);
int v00 = ivalue(iy+0, ix+0);
int v01 = ivalue(iy+0, ix+1);
int v10 = ivalue(iy+1, ix+0);
int v11 = ivalue(iy+1, ix+1);
float v0 = v00*(1-fx) + v01*fx;
float v1 = v10*(1-fx) + v11*fx;
return v0*(1-fy) + v1*fy;
}
unsigned char pic[1024*1024];
int main() {
for (int y=0; y<1024; y++) {
for (int x=0; x<1024; x++) {
float v = 0;
for (int o=0; o<=9; o++) {
v += value(x/64.0f*(1<<o), y/64.0f*(1<<o))/(1<<o);
}
int r = rint(v*0.5f);
pic[y*1024+x] = r;
}
}
FILE *f = fopen("x.pnm", "wb");
fprintf(f, "P5\n1024 1024\n255\n");
fwrite(pic, 1, 1024*1024, f);
fclose(f);
}
If you want to understand, how a hash function work (or better yet, which properties a good hash have), check out Bob's page, for example this.
You (unknowingly?) implemented a visualization of PRNG non-random patterns. That looks very cool!
Except Mersenne Twister, all your tested PRNGs do not seem fit for your purpose. As I have not done further tests myself, I can only suggest to try out and measure further PRNGs.
The randomness of LCGs are known to be sensitive to the choice of their parameters. In particular, the period of a LCG is relative to the m parameter - at most it will be m (your prime factor) & for many values it can be less.
Similarly, the careful parameters selection is required to get a long period from Xorshift PRNGs.
You've noted that some PRNGs give good procedural generation results while other do not. In order to isolate the cause, I would factor out the proc gen stuff & examine the PRNG output directly. An easy way to visualize the data is to build a grey scale image where each pixel value is a (possibly scaled) random value. For image based stuff, I find this to be an easy way to find stuff that may lead to visual artifacts. Any artifacts you see with this are likely to cause issues with your proc gen output.
Another option is to try something like the Diehard tests. If the aforementioned image test failed to reveal any problems, I might use this just to be sure my PRNG techniques were trustworthy.
Note that your code seeds the PRNG, then generates one pseudorandom number from the PRNG. The reason for the nonrandomness in xorshift128+ that you discovered is that xorshift128+ simply adds the two halves of the seed (and uses the result mod 264 as the generated number) before changing its state (review its source code). This makes that PRNG considerably different from a hash function.
What you see is the practical demonstration of quality of PRNG. Mersenne Twister is one of the best PRNGs with good performance, it passes DIEHARD tests. One should know that generating a random numbers is not an easy computational task, so looking for a better performance will inevitably result in poor quality. LCG is known to be simplest and worst PRNG ever designed and it clearly shows two-dimensional correlation as in your picture. The quality of Xorshift generators largely depend on bitness and parameters. They are definitely worse than Mersenne Twister, but some (xorshift128+) may work good enough to pass BigCrush battery of TestU01 tests.
In other words, if you are making an important physical modelling numerical experiment, you better continue to use Mersenne Twister as known to be a good trade-off between speed and quality and it comes in many standard libraries. On a less important case you may try to use xorshift128+ generator. For an ultimate results you need to use cryptographical-quality PRNG (none of mentioned here may be used for cryptographical purposes).
Although it is known that using nested std::vector to represent matrices is a bad idea, let's use it for now since it is flexible and many existing functions can handle std::vector.
I thought, in small cases, the speed difference can be ignored. But it turned out that vector<vector<double>> is 10+ times slower than numpy.dot().
Let A and B be matrices whose size is sizexsize. Assuming square matrices is just for simplicity. (We don't intend to limit discussion to the square matrices case.) We initialize each matrix in a deterministic way, and finally calculate C = A * B.
We define "calculation time" as the time elapsed just to calculate C = A * B. In other words, various overheads are not included.
Python3 code
import numpy as np
import time
import sys
if (len(sys.argv) != 2):
print("Pass `size` as an argument.", file = sys.stderr);
sys.exit(1);
size = int(sys.argv[1]);
A = np.ndarray((size, size));
B = np.ndarray((size, size));
for i in range(size):
for j in range(size):
A[i][j] = i * 3.14 + j
B[i][j] = i * 3.14 - j
start = time.time()
C = np.dot(A, B);
print("{:.3e}".format(time.time() - start), file = sys.stderr);
C++ code
using namespace std;
#include <iostream>
#include <vector>
#include <chrono>
int main(int argc, char **argv) {
if (argc != 2) {
cerr << "Pass `size` as an argument.\n";
return 1;
}
const unsigned size = atoi(argv[1]);
vector<vector<double>> A(size, vector<double>(size));
vector<vector<double>> B(size, vector<double>(size));
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
A[i][j] = i * 3.14 + j;
B[i][j] = i * 3.14 - j;
}
}
auto start = chrono::system_clock::now();
vector<vector<double>> C(size, vector<double>(size, /* initial_value = */ 0));
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
for (int k = 0; k < size; ++k) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
cerr << scientific;
cerr.precision(3);
cerr << chrono::duration<double>(chrono::system_clock::now() - start).count() << "\n";
}
C++ code (multithreaded)
We also wrote a multithreaded version of C++ code since numpy.dot() is automatically calculated in parallel.
You can get all the codes from GitHub.
Result
C++ version is 10+ times slower than Python 3 (with numpy) version.
matrix_size: 200x200
--------------- Time in seconds ---------------
C++ (not multithreaded): 8.45e-03
C++ (1 thread): 8.66e-03
C++ (2 threads): 4.68e-03
C++ (3 threads): 3.14e-03
C++ (4 threads): 2.43e-03
Python 3: 4.07e-04
-----------------------------------------------
matrix_size: 400x400
--------------- Time in seconds ---------------
C++ (not multithreaded): 7.011e-02
C++ (1 thread): 6.985e-02
C++ (2 threads): 3.647e-02
C++ (3 threads): 2.462e-02
C++ (4 threads): 1.915e-02
Python 3: 1.466e-03
-----------------------------------------------
Question
Is there any way to make the C++ implementation faster?
Optimizations I Tried
swap calculation order -> at most 3.5 times faster (not than numpy code but than C++ code)
optimization 1 plus partial unroll -> at most 4.5 times faster, but this can be done only when size is known in advance No. As pointed out in this comment, size is not needed to be known. We can just limit the max value of loop variables of unrolled loops and process remaining elements with normal loops. See my implementation for example.
optimization 2, plus minimizing the call of C[i][j] by introducing a simple variable sum -> at most 5.2 times faster. The implementation is here. This result implies std::vector::operator[] is un-ignorably slow.
optimization 3, plus g++ -march=native flag -> at most 6.2 times faster (By the way, we use -O3 of course.)
Optimization 3, plus reducing the call of operator [] by introducing a pointer to an element of A since A's elements are sequentially accessed in the unrolled loop. -> At most 6.2 times faster, and a little little bit faster than Optimization 4. The code is shown below.
g++ -funroll-loops flag to unroll for loops -> no change
g++ #pragma GCC unroll n -> no change
g++ -flto flag to turn on link time optimizations -> no change
Block Algorithm -> no change
transpose B to avoid cache miss -> no change
long linear std::vector instead of nested std::vector<std::vector>, swap calculation order, block algorithm, and partial unroll -> at most 2.2 times faster
Optimization 1, plus PGO(profile-guided optimization) -> 4.7 times faster
Optimization 3, plus PGO -> same as Optimization 3
Optimization 3, plus g++ specific __builtin_prefetch() -> same as Optimization 3
Current Status
(originally) 13.06 times slower -> (currently) 2.10 times slower
Again, you can get all the codes on GitHub. But let us cite some codes, all of which are functions called from the multithreaded version of C++ code.
Original Code (GitHub)
void f(const vector<vector<double>> &A, const vector<vector<double>> &B, vector<vector<double>> &C, unsigned row_start, unsigned row_end) {
const unsigned j_max = B[0].size();
const unsigned k_max = B.size();
for (int i = row_start; i < row_end; ++i) {
for (int j = 0; j < j_max; ++j) {
for (int k = 0; k < k_max; ++k) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
}
Current Best Code (GitHub)
This is the implementation of the Optimization 5 above.
void f(const vector<vector<double>> &A, const vector<vector<double>> &B, vector<vector<double>> &C, unsigned row_start, unsigned row_end) {
static const unsigned num_unroll = 5;
const unsigned j_max = B[0].size();
const unsigned k_max_for_unrolled_loop = B.size() / num_unroll * num_unroll;
const unsigned k_max = B.size();
for (int i = row_start; i < row_end; ++i) {
for (int k = 0; k < k_max_for_unrolled_loop; k += num_unroll) {
for (int j = 0; j < j_max; ++j) {
const double *p = A[i].data() + k;
double sum;
sum = *p++ * B[k][j];
sum += *p++ * B[k+1][j];
sum += *p++ * B[k+2][j];
sum += *p++ * B[k+3][j];
sum += *p++ * B[k+4][j];
C[i][j] += sum;
}
}
for (int k = k_max_for_unrolled_loop; k < k_max; ++k) {
const double a = A[i][k];
for (int j = 0; j < j_max; ++j) {
C[i][j] += a * B[k][j];
}
}
}
}
We've tried many optimizations since we first posted this question. We spent whole two days struggling with this problem, and finally reached the point where we have no more idea how to optimize the current best code. We doubt more complex algorithms like Strassen's will do it better since cases we handle are not large and each operation on std::vector is so expensive that, as we've seen, just reducing the call of [] improved the performance well.
We (want to) believe we can make it better, though.
Matrix multiplication is relativly easy to optimize. However if you want to get to decent cpu utilization it becomes tricky because you need deep knowledge of the hardware you are using. The steps to implement a fast matmul kernel are the following:
Use SIMDInstructions
Use Register Blocking and fetch multiple data at once
Optimize for your chache lines (mainly L2 and L3)
Parallelize your code to use multiple threads
Under this linke is a very good ressource, that explains all the nasty details:
https://gist.github.com/nadavrot/5b35d44e8ba3dd718e595e40184d03f0
If you want more indepth advise leave a comment.
Well i have to paralellisize the mandelbrot program in C. I think i have done it well and i cant get better times. My question if someone has an idea to improve the code, ive been thinking perhaps in nested parallel regions between the outer and insider for...
Also i have doubts if its more elegant or recommended to put all the pragmas in a single line or to write separate pragmas ( one for omp parallel and shared and private variables and a conditional, and another pragma with omp for and schedule dynamic).
Ive the doubt if constants can be used as private variables because i think is cleaner to have constants instead of defined variables.
Also i have written a conditional ( if numcpu >1) it has no sense to use parallel region and make a normal sequential execution.
Finally as i have read the dynamic chunk it depends on hardware and your system configuration... so i have left it as a constant, so it can be easily changed.
Also i adapt the number of threads to the number of processors available..
int main(int argc, char *argv[])
{
omp_set_dynamic(1);
int xactual, yactual;
//each iteration, it calculates: newz = oldz*oldz + p, where p is the current pixel, and oldz stars at the origin
double pr, pi; //real and imaginary part of the pixel p
double newRe, newIm, oldRe, oldIm; //real and imaginary parts of new and old z
double zoom = 1, moveX = -0.5, moveY = 0; //you can change these to zoom and change position
pixel_t *pixels = malloc(sizeof(pixel_t)*IMAGEHEIGHT*IMAGEWIDTH);
clock_t begin, end;
double time_spent;
begin=clock();
int numcpu;
numcpu = omp_get_num_procs();
//FILE * fp;
printf("El nĂºmero de procesadores que utilizaremos es: %d", numcpu);
omp_set_num_threads(numcpu);
#pragma omp parallel shared(pixels, moveX, moveY, zoom) private(xactual, yactual, pr, pi, newRe, newIm) (if numcpu>1)
{
//int xactual=0;
// int yactual=0;
#pragma omp for schedule(dynamic, CHUNK)
//loop through every pixel
for(yactual = 0; yactual < IMAGEHEIGHT; yactual++)
for(xactual = 0; xactual < IMAGEWIDTH; xactual++)
{
//calculate the initial real and imaginary part of z, based on the pixel location and zoom and position values
pr = 1.5 * (xactual - IMAGEWIDTH / 2) / (0.5 * zoom * IMAGEWIDTH) + moveX;
pi = (yactual - IMAGEHEIGHT / 2) / (0.5 * zoom * IMAGEHEIGHT) + moveY;
newRe = newIm = oldRe = oldIm = 0; //these should start at 0,0
//"i" will represent the number of iterations
int i;
//start the iteration process
for(i = 0; i < ITERATIONS; i++)
{
//remember value of previous iteration
oldRe = newRe;
oldIm = newIm;
//the actual iteration, the real and imaginary part are calculated
newRe = oldRe * oldRe - oldIm * oldIm + pr;
newIm = 2 * oldRe * oldIm + pi;
//if the point is outside the circle with radius 2: stop
if((newRe * newRe + newIm * newIm) > 4) break;
}
// color(i % 256, 255, 255 * (i < maxIterations));
if(i == ITERATIONS)
{
//color(0, 0, 0); // black
pixels[yactual*IMAGEWIDTH+xactual][0] = 0;
pixels[yactual*IMAGEWIDTH+xactual][1] = 0;
pixels[yactual*IMAGEWIDTH+xactual][2] = 0;
}
else
{
double z = sqrt(newRe * newRe + newIm * newIm);
int brightness = 256 * log2(1.75 + i - log2(log2(z))) / log2((double)ITERATIONS);
//color(brightness, brightness, 255)
pixels[yactual*IMAGEWIDTH+xactual][0] = brightness;
pixels[yactual*IMAGEWIDTH+xactual][1] = brightness;
pixels[yactual*IMAGEWIDTH+xactual][2] = 255;
}
}
} //end of parallel region
end= clock();
time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
fprintf(stderr, "Elapsed time: %.2lf seconds.\n", time_spent);
You could extend the implementation to leverage SIMD extensions. As far as I know the latest OpenMP standard includes vector constructs. Check out this article that describes the new capabilities.
This whitepaper explains how SSE3 can be used when calculating the Mandelbrot set.
Is there a way, how to make modulo by 511 (and 127) faster than using "%" operator ?
int c = 758 % 511;
int d = 423 % 127;
Here is a way to do fast modulo by 511 assuming that x is at most 32767. It's about twice as fast as x%511. It does the modulo in five steps: two multiply, two addition, one shift.
inline int fast_mod_511(int x) {
int y = (513*x+64)>>18;
return x - 511*y;
}
Here is the theory at how I arrive at this. I posted the code I tested this at the end
Let's consider
y = x/511 = x/(512-1) = x/1000 * 1/(1-1/512).
Let's define z = 512, then
y = x/z*1/(1-1/z).
Using Taylor expansion
y = x/z(1 + 1/z + 1/z^2 + 1/z^3 + ...).
Now if we know that x has a limited range we can cut the expansion. Let's assume x is always less than 2^15=32768. Then we can write
512*512*y = (1+512)*x = 513*x.
After looking at the digits which are significant we arrive at
y = (513*x+64)>>18 //512^2 = 2^18.
We can divide x/511 (assuming x is less than 32768) in three steps:
multiply,
add,
shift.
Here is the code I just to profile this in MSVC2013 64-bit release mode on an Ivy Bridge core.
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
inline int fast_mod_511(int x) {
int y = (513*x+64)>>18;
return x - 511*y;
}
int main() {
unsigned int i, x;
volatile unsigned int r;
double dtime;
dtime = omp_get_wtime();
for(i=0; i<100000; i++) {
for(int j=0; j<32768; j++) {
r = j%511;
}
}
dtime =omp_get_wtime() - dtime;
printf("time %f\n", dtime);
dtime = omp_get_wtime();
for(i=0; i<100000; i++) {
for(int j=0; j<32768; j++) {
r = fast_mod_511(j);
}
}
dtime =omp_get_wtime() - dtime;
printf("time %f\n", dtime);
}
You can use a lookup table with the solutions pre-stored. If you create an array of a million integers looking up is about twice as fast as actually doing modulo in my C# app.
// fill an array
var mod511 = new int[1000000];
for (int x = 0; x < 1000000; x++) mod511[x] = x % 511;
and instead of using
c = 758 % 511;
you use
c = mod511[758];
This will cost you (possibly a lot of) memory, and will obviously not work if you want to use it for very large numbers also. But it is faster.
If you have to repeat those two modulus operations on a large number of data and your CPU supports SIMD (for example Intel's SSE/AVX/AVX2) then you can vectorize the operations, i.e., do the operations on many data in parallel. You can do this by using intrinsics or inline assembly. Yes the solution will be platform specific but maybe that is fine...
I am trying to fit a transformation from one set of coordinates to another.
x' = R + Px + Qy
y' = S - Qx + Py
Where P,Q,R,S are constants, P = scale*cos(rotation). Q=scale*sin(rotation)
There is a well known 'by hand' formula for fitting P,Q,R,S to a set of corresponding points.
But I need to have an error estimate on the fit - so I need a least squares solution.
Read 'Numerical Recipes' but I'm having trouble working out how to do this for data sets with x and y in them.
Can anyone point to an example/tutorial/code sample of how to do this ?
Not too bothered about the language.
But - just use built in feature of Matlab/Lapack/numpy/R probably not helpful !
edit:
I have a large set of old(x,y) new(x,y) to fit to. The problem is overdetermined (more data points than unknowns) so simple matrix inversion isn't enough - and as I said I really need the error on the fit.
The following code should do the trick. I used the following formula for the residuals:
residual[i] = (computed_x[i] - actual_x[i])^2
+ (computed_y[i] - actual_y[i])^2
And then derived the least-squares formulae based on the general procedure described at Wolfram's MathWorld.
I tested out this algorithm in Excel and it performs as expected. I Used a collection of ten random points which were then rotated, translated and scaled by a randomly generated transformation matrix.
With no random noise applied to the output data, this program produces four parameters (P, Q, R, and S) which are identical to the input parameters, and an rSquared value of zero.
As more and more random noise is applied to the output points, the constants start to drift away from the correct values, and the rSquared value increases accordingly.
Here is the code:
// test data
const int N = 1000;
float oldPoints_x[N] = { ... };
float oldPoints_y[N] = { ... };
float newPoints_x[N] = { ... };
float newPoints_y[N] = { ... };
// compute various sums and sums of products
// across the entire set of test data
float Ex = Sum(oldPoints_x, N);
float Ey = Sum(oldPoints_y, N);
float Exn = Sum(newPoints_x, N);
float Eyn = Sum(newPoints_y, N);
float Ex2 = SumProduct(oldPoints_x, oldPoints_x, N);
float Ey2 = SumProduct(oldPoints_y, oldPoints_y, N);
float Exxn = SumProduct(oldPoints_x, newPoints_x, N);
float Exyn = SumProduct(oldPoints_x, newPoints_y, N);
float Eyxn = SumProduct(oldPoints_y, newPoints_x, N);
float Eyyn = SumProduct(oldPoints_y, newPoints_y, N);
// compute the transformation constants
// using least-squares regression
float divisor = Ex*Ex + Ey*Ey - N*(Ex2 + Ey2);
float P = (Exn*Ex + Eyn*Ey - N*(Exxn + Eyyn))/divisor;
float Q = (Exn*Ey + Eyn*Ex + N*(Exyn - Eyxn))/divisor;
float R = (Exn - P*Ex - Q*Ey)/N;
float S = (Eyn - P*Ey + Q*Ex)/N;
// compute the rSquared error value
// low values represent a good fit
float rSquared = 0;
float x;
float y;
for (int i = 0; i < N; i++)
{
x = R + P*oldPoints_x[i] + Q*oldPoints_y[i];
y = S - Q*oldPoints_x[i] + P*oldPoints_y[i];
rSquared += (x - newPoints_x[i])^2;
rSquared += (y - newPoints_y[i])^2;
}
To find P, Q, R, and S, then you can use least squares. I think the confusing thing is that that usual description of least squares uses x and y, but they don't match the x and y in your problem. You just need translate your problem carefully into the least squares framework. In your case the independent variables are the untransformed coordinates x and y, the dependent variables are the transformed coordinates x' and y', and the adjustable parameters are P, Q, R, and S. (If this isn't clear enough, let me know and I'll post more detail.)
Once you've found P, Q, R, and S, then scale = sqrt(P^2 + Q^2) and you can then find the rotation from sin rotation = Q / scale and cos rotation = P / scale.
You can use the levmar program to calculate this. Its tested and integrated into multiple products including mine. Its licensed under the GPL, but if this is a non-opensource project, he will change the license for you (for a fee)
Define the 3x3 matrix T(P,Q,R,S) such that (x',y',1) = T (x,y,1). Then compute
A = \sum_i |(T (x_i,y_i,1)) - (x'_i,y'_i,1)|^2
and minimize A against (P,Q,R,S).
Coding this yourself is a medium to large sized project unless you can guarntee that the data are well conditioned, especially when you want good error estimates out of the procedure. You're probably best off using an existing minimizer that supports error estimates..
Particle physics type would use minuit either directly from CERNLIB (with the coding most easily done in fortran77), or from ROOT (with the coding in c++, or it should be accessible though the python bindings). But that is a big installation if you don't have one of these tools already.
I'm sure that others can suggest other minimizers.
Thanks eJames, thats almost exaclty what I have. I coded it from an old army surveying manual that was based on an earlier "Instructions to Surveyors" note that must be 100years old! (It uses N and E for North and East rather than x/y )
The goodness of fit parameter will be very useful - I can interactively throw out selected points if they make the fit worse.
FindTransformation(vector<Point2D> known,vector<Point2D> unknown) {
{
// sums
for (unsigned int ii=0;ii<known.size();ii++) {
sum_e += unknown[ii].x;
sum_n += unknown[ii].y;
sum_E += known[ii].x;
sum_N += known[ii].y;
++n;
}
// mean position
me = sum_e/(double)n;
mn = sum_n/(double)n;
mE = sum_E/(double)n;
mN = sum_N/(double)n;
// differences
for (unsigned int ii=0;ii<known.size();ii++) {
de = unknown[ii].x - me;
dn = unknown[ii].y - mn;
// for P
sum_deE += (de*known[ii].x);
sum_dnN += (dn*known[ii].y);
sum_dee += (de*unknown[ii].x);
sum_dnn += (dn*unknown[ii].y);
// for Q
sum_dnE += (dn*known[ii].x);
sum_deN += (de*known[ii].y);
}
double P = (sum_deE + sum_dnN) / (sum_dee + sum_dnn);
double Q = (sum_dnE - sum_deN) / (sum_dee + sum_dnn);
double R = mE - (P*me) - (Q*mn);
double S = mN + (Q*me) - (P*mn);
}
One issue is that numeric stuff like this is often tricky. Even when the algorithms are straightforward, there's often problems that show up in actual computation.
For that reason, if there is a system you can get easily that has a built-in feature, it might be best to use that.