Related
My task is to solve alternating sub string problem with a recursive dynamic programming approach:
Consider a sequence A = a1, a2, a3, ... an of integers. A subsequence B of a is a sequence B = b1, b2, .... ,bn which is created from A by removing some elements but by keeping the order. Given an integer sequence A, the goal is to compute anb alternating subsequence B, i.e. a sequence b1, ... bn such that for all i in {2, 3, ... , m-1}, if b{i-1} < b{i} then b{i} > b{i+1} and if b{i-1} > b{i} then b{i} < b{i+1}
So far I need to check on every recursive step if I want to take the element and look for the next alternating number or if I simply take the next number and start with both possibles of alternation.
s index from left
e end ( len(Array))
A array
g(A,s) a function which get next greater or smaller integer.
my recursive formula is:
V(A, s, e) = max( V(A, g(A,s),e), V(A, s+1, e) ) +1
V(A, g(A,s),e) takes the element and continues with next alternating one
V(A, s+1, e) leaves the element and start new sequence at next element
assuming that my implementation and approach is correct I suggest the runntime to O(n^2) since we need to know every combination ones.
Without the mesmerization part it would be O(2^n) like a binary trees leaf amount.
Is this analysis correct? Is might be just correct for the formula but not for the code...
the function getsmaller and getbigger are g(A,s)
A = [5,6,5,5,5,7,5,5,5,87,5]
s = 0
e = len(A)
memo_want_small = [-1] * len(A)
memo_want_bigger = [-1] * len(A)
def getsmaller(A, s):
erg = 0
for i in range(s, len(A)):
if A[i] < A[s]:
if i is not None:
return i
return -1
def getbigger(A, s):
for i in range(s, len(A)):
if A[i] > A[s]:
if i is not None:
return i
return -1
def wantsmall(A, s, e):
if s == -1: # no more alternating element
return 0
if s == e: # base case
return 0
if memo_want_small[s] is not -1:
return memo_want_small[s]
return_V = max(wantbigger(A, getbigger(A, s), e) , alt(A, s+1, e)) + 1
memo_want_small[s] = return_V
return return_V
def wantbigger(A, s, e):
if s == -1: # no more alternating element
return 0
if s == e: # base case
return 0
if memo_want_bigger[s] is not -1:
return memo_want_bigger[s]
return_V = max(wantsmall(A, getsmaller(A, s), e) , alt(A, s+1, e)) + 1
memo_want_bigger[s] = return_V
return return_V
def alt(A, s, e):
if s == e: # base case
return 0
return max(wantsmall(A, getsmaller(A, s), e), wantbigger(A, getbigger(A, s), e))
print("solution: " + str(alt(A,s,e)))
Let's consider a sequence going left from A[i], with direction up first.
First, there could not be a higher element, A[j] to the left of A[i] that ends a longer sequence, because if there were, we could always switch that element with A[i] and end up with an up-first sequence of the same length.
* Going left from A[i], up-first
↖
A[j]
... A[i]
Secondly, there could not be a lower element, A[j] to the left, ending a longer up-first sequence, and an element in between, A[k], that's higher than A[i], because then we could just add both A[i] and the higher element and get a sequence longer by two.
* Going left from A[i], up-first
A[k]
... ... A[i]
↖
A[j]
So, looking left, the longest up-first sequence ending at A[i] is either (1) the same length or longer than the sequence ending at the next higher element to the left, or (2) the same length as the sequence ending at the lowest element of any contiguous, monotonically increasing subarray that reaches A[i].
Now, consider an element, A[r], the first higher to the right of A[i], for which we would like to find the longest down-first sequence ending at it. As we've shown, elements to the left of A[i] that end an up-first sequence and are either higher or lower than A[i] can already be accounted for when calculating a result for A[i], therefore it remains the only cell of interest for calculating the longest down-first sequence ending at A[r] (looking to the left). This points to an O(n) dynamic program.
JavaScript code:
// Preprocess previous higher and lower elements in O(n)
// Adapted from https://www.geeksforgeeks.org/next-greater-element
function prev(A, higherOrLower) {
function compare(a, b){
if (higherOrLower == 'higher')
return a < b
else if (higherOrLower == 'lower')
return a > b
}
let result = new Array(A.length)
let stack = [A.length - 1]
for (let i=A.length-2; i>=0; i--){
if (!stack.length){
stack.push(A[i])
continue
}
while (stack.length && compare(A[ stack[stack.length-1] ], A[i]))
result[ stack.pop() ] = i
stack.push(i)
}
while (stack.length)
result[ stack.pop() ] = -1
return result
}
function longestAlternatingSequence(A){
let prevHigher = prev(A, 'higher')
let prevLower = prev(A, 'lower')
let longestUpFirst = new Array(A.length)
let longestDownFirst = new Array(A.length)
let best = 1
longestUpFirst[0] = 1
longestDownFirst[0] = 1
for (let i=1; i<A.length; i++){
// Longest up-first
longestUpFirst[i] = Math.max(
A[i] >= A[i-1] ? longestUpFirst[i - 1] : -Infinity,
prevHigher[i] != -1 ? longestUpFirst[ prevHigher[i] ] : -Infinity,
prevHigher[i] != -1 ? 1 + longestDownFirst[ prevHigher[i] ] : -Infinity,
1
)
// Longest down-first
longestDownFirst[i] = Math.max(
A[i] <= A[i-1] ? longestDownFirst[i - 1] : -Infinity,
prevLower[i] != -1 ? longestDownFirst[ prevLower[i] ] : -Infinity,
prevLower[i] != -1 ? 1 + longestUpFirst[ prevLower[i] ] : -Infinity,
1
)
best = Math.max(best, longestUpFirst[i], longestDownFirst[i])
}
console.log(`${ longestUpFirst } (longestUpFirst)`)
console.log(`${ longestDownFirst } (longestDownFirst)`)
return best
}
var tests = [
[5,6,5,5,5,7,5,5,5,87,5],
[1,2,3,4,5,6,7,8],
new Array(10).fill(null).map(_ => ~~(Math.random()*50))
]
for (let A of tests){
console.log(JSON.stringify(A))
console.log(longestAlternatingSequence(A))
console.log('')
}
Update
Heh, there's a simpler O(n) recurrence here: https://www.geeksforgeeks.org/longest-alternating-subsequence/
Find and output the given number's shortest square sum.
Example: 12 = 2^2 + 2^2 + 2^2 (not 3^2 + 1^2 + 1^2 + 1^2)
Output: {2 2 2}
This is min-coin-change problem, where the coins are [1,4,9,...,(ceil(sqrt(n)))^2].
It can be solved using Dynamic Programming (DP) by following the recurrence formula:
D(i,0) = 0
D(i,x) = infinity x<0
D(0,x) = infinity x>0
D(i,x) = min { D(i,x-i^2) + 1, D(i-1,x) }
When building your matrix (assuming bottom-up DP), the element denoted in the matrix in D(ceil(sqrt(n)),n) is the minimal number of "coins" (squared numbers) needed to build your input number.
Getting the actual elements is done by tracking back your choices in the matrix after it is built, and at each point checking if you added a summand or not.
This is explained in more details for similar problems in this thread and this thread.
Here is a visual basic solution to the problem.
An edit would need to be done to cache intermediate answers so that the algorithm would be significantly faster. Currently ... only a value of about 40 to 50 is quickly computed. This is fully working and tested. It only returns the shortest answer and one where the higher value are to the left of other values.
Private Function ShortestSquareSum(x As Integer) As Integer()()
If x < 0 Then
Throw New ArgumentException("Parameter cannot be negative.", "x")
ElseIf x = 0 Then
Return New Integer()() {New Integer() {}}
Else
Dim answers As New List(Of Integer())
Dim shortest As Integer? = Nothing
For y As Integer = Math.Floor(Math.Sqrt(x)) To 1 Step -1
Dim remaining As Integer = x - y * y
Dim tempAnswers As Integer()() = ShortestSquareSum(x - y * y)
For Each answer As Integer() In tempAnswers
Dim currentAnswer As New List(Of Integer)
currentAnswer.Add(y)
currentAnswer.AddRange(answer)
If Not shortest.HasValue OrElse currentAnswer.Count < shortest Then
shortest = currentAnswer.Count
answers.Clear()
answers.Add(currentAnswer.ToArray())
ElseIf currentAnswer.Count = shortest AndAlso (answer.Count = 0 OrElse y > answer(0)) Then
answers.Add(currentAnswer.ToArray())
End If
Next
Next
Return answers.ToArray()
End If
End Function
public static void shortest_square(int n)
{
int i=2;
List<Integer> list= new ArrayList<Integer>();
while(i<=n) || n!=0)
{
if(n%(i*i)==0)
{
n=n-(i*i);
list.add(i);
}
else
{
i++;
}
}
System.out.println(list);
}
The puzzle
For every input number n (n < 10) there is an output number m such that:
m's first digit is n
m is an n digit number
every 2 digit sequence inside m must be a different prime number
The output should be m where m is the smallest number that fulfils the conditions above. If there is no such number, the output should be -1;
Examples
n = 3 -> m = 311
n = 4 -> m = 4113 (note that this is not 4111 as that would be repeating 11)
n = 9 -> m = 971131737
My somewhat working solution
Here's my first stab at this, the "brute force" approach. I am looking for a more elegant solution as this is very inefficient as n grows larger.
public long GetM(int n)
{
long start = n * (long)Math.Pow((double)10, (double)n - 1);
long end = n * (long)Math.Pow((double)10, (double)n);
for (long x = start; x < end; x++)
{
long xCopy = x;
bool allDigitsPrime = true;
List<int> allPrimeNumbers = new List<int>();
while (xCopy >= 10)
{
long lastDigitsLong = xCopy % 100;
int lastDigits = (int)lastDigitsLong;
bool lastDigitsSame = allPrimeNumbers.Count != 0 && allPrimeNumbers.Contains(lastDigits);
if (!IsPrime(lastDigits) || lastDigitsSame)
{
allDigitsPrime = false;
break;
}
xCopy /= 10;
allPrimeNumbers.Add(lastDigits);
}
if (n != 1 && allDigitsPrime)
{
return x;
}
}
return -1;
}
Initial thoughts on how this could be made more efficient
So, clearly the bottleneck here is traversing through the whole list of numbers that could fulfil this condition from n.... to (n+1).... . Instead of simply incrementing the number of every iteration of the loop, there must be some clever way of skipping numbers based on the requirement that the 2 digit sequences must be prime. For instance for n = 5, there is no point going through 50000 - 50999 (50 isn't prime), 51200 - 51299 (12 isn't prime), but I wasn't quite sure how this could be implemented or if it would be enough of an optimization to make the algorithm run for n=9.
Any ideas on this approach or a different optimization approach?
You don't have to try all numbers. You can instead use a different strategy, summed up as "try appending a digit".
Which digit? Well, a digit such that
it forms a prime together with your current last digit
the prime formed has not occurred in the number before
This should be done recursively (not iteratively), because you may run out of options and then you'd have to backtrack and try a different digit earlier in the number.
This is still an exponential time algorithm, but it avoids most of the search space because it never tries any numbers that don't fit the rule that every pair of adjacent digits must form a prime number.
Here's a possible solution, in R, using recursion . It would be interesting to build a tree of all the possible paths
# For every input number n (n < 10)
# there is an output number m such that:
# m's first digit is n
# m is an n digit number
# every 2 digit sequence inside m must be a different prime number
# Need to select the smallest m that meets the criteria
library('numbers')
mNumHelper <- function(cn,n,pr,cm=NULL) {
if (cn == 1) {
if (n==1) {
return(1)
}
firstDigit <- n
} else {
firstDigit <- mod(cm,10)
}
possibleNextNumbers <- pr[floor(pr/10) == firstDigit]
nPossible = length(possibleNextNumbers)
if (nPossible == 1) {
nextPrime <- possibleNextNumbers
} else{
# nextPrime <- sample(possibleNextNumbers,1)
nextPrime <- min(possibleNextNumbers)
}
pr <- pr[which(pr!=nextPrime)]
if (is.null(cm)) {
cm <- nextPrime
} else {
cm = cm * 10 + mod(nextPrime,10)
}
cn = cn + 1
if (cn < n) {
cm = mNumHelper(cn,n,pr,cm)
}
return(cm)
}
mNum <- function(n) {
pr<-Primes(10,100)
m <- mNumHelper(1,n,pr)
}
for (i in seq(1,9)) {
print(paste('i',i,'m',mNum(i)))
}
Sample output
[1] "i 1 m 1"
[1] "i 2 m 23"
[1] "i 3 m 311"
[1] "i 4 m 4113"
[1] "i 5 m 53113"
[1] "i 6 m 611317"
[1] "i 7 m 7113173"
[1] "i 8 m 83113717"
[1] "i 9 m 971131737"
Solution updated to select the smallest prime from the set of available primes, and remove bad path check since it's not required.
I just made a list of the two-digit prime numbers, then solved the problem by hand; it took only a few minues. Not every problem requires a computer!
I wrote recursive backtracking algorithm for finding all subsets of a given set.
void backtracke(int* a, int k, int n)
{
if (k == n)
{
for(int i = 1; i <=k; ++i)
{
if (a[i] == true)
{
std::cout << i << " ";
}
}
std::cout << std::endl;
return;
}
bool c[2];
c[0] = false;
c[1] = true;
++k;
for(int i = 0; i < 2; ++i)
{
a[k] = c[i];
backtracke(a, k, n);
a[k] = INT_MAX;
}
}
now we have to write the same algorithm but in an iterative form, how to do it ?
You can use the binary counter approach. Any unique binary string of length n represents a unique subset of a set of n elements. If you start with 0 and end with 2^n-1, you cover all possible subsets. The counter can be easily implemented in an iterative manner.
The code in Java:
public static void printAllSubsets(int[] arr) {
byte[] counter = new byte[arr.length];
while (true) {
// Print combination
for (int i = 0; i < counter.length; i++) {
if (counter[i] != 0)
System.out.print(arr[i] + " ");
}
System.out.println();
// Increment counter
int i = 0;
while (i < counter.length && counter[i] == 1)
counter[i++] = 0;
if (i == counter.length)
break;
counter[i] = 1;
}
}
Note that in Java one can use BitSet, which makes the code really shorter, but I used a byte array to illustrate the process better.
There are a few ways to write an iterative algorithm for this problem. The most commonly suggested would be to:
Count (i.e. a simply for-loop) from 0 to 2numberOfElements - 1
If we look at the variable used above for counting in binary, the digit at each position could be thought of a flag indicating whether or not the element at the corresponding index in the set should be included in this subset. Simply loop over each bit (by taking the remainder by 2, then dividing by 2), including the corresponding elements in our output.
Example:
Input: {1,2,3,4,5}.
We'd start counting at 0, which is 00000 in binary, which means no flags are set, so no elements are included (this would obviously be skipped if you don't want the empty subset) - output {}.
Then 1 = 00001, indicating that only the last element would be included - output {5}.
Then 2 = 00010, indicating that only the second last element would be included - output {4}.
Then 3 = 00011, indicating that the last two elements would be included - output {4,5}.
And so on, all the way up to 31 = 11111, indicating that all the elements would be included - output {1,2,3,4,5}.
* Actually code-wise, it would be simpler to turn this on its head - output {1} for 00001, considering that the first remainder by 2 will then correspond to the flag of the 0th element, the second remainder, the 1st element, etc., but the above is simpler for illustrative purposes.
More generally, any recursive algorithm could be changed to an iterative one as follows:
Create a loop consisting of parts (think switch-statement), with each part consisting of the code between any two recursive calls in your function
Create a stack where each element contains each necessary local variable in the function, and an indication of which part we're busy with
The loop would pop elements from the stack, executing the appropriate section of code
Each recursive call would be replaced by first adding it's own state to the stack, and then the called state
Replace return with appropriate break statements
A little Python implementation of George's algorithm. Perhaps it will help someone.
def subsets(S):
l = len(S)
for x in range(2**l):
yield {s for i,s in enumerate(S) if ((x / 2**i) % 2) // 1 == 1}
Basically what you want is P(S) = S_0 U S_1 U ... U S_n where S_i is a set of all sets contained by taking i elements from S. In other words if S= {a, b, c} then S_0 = {{}}, S_1 = {{a},{b},{c}}, S_2 = {{a, b}, {a, c}, {b, c}} and S_3 = {a, b, c}.
The algorithm we have so far is
set P(set S) {
PS = {}
for i in [0..|S|]
PS = PS U Combination(S, i)
return PS
}
We know that |S_i| = nCi where |S| = n. So basically we know that we will be looping nCi times. You may use this information to optimize the algorithm later on. To generate combinations of size i the algorithm that I present is as follows:
Suppose S = {a, b, c} then you can map 0 to a, 1 to b and 2 to c. And perumtations to these are (if i=2) 0-0, 0-1, 0-2, 1-0, 1-1, 1-2, 2-0, 2-1, 2-2. To check if a sequence is a combination you check if the numbers are all unique and that if you permute the digits the sequence doesn't appear elsewhere, this will filter the above sequence to just 0-1, 0-2 and 1-2 which are later mapped back to {a,b},{a,c},{b,c}. How to generate the long sequence above you can follow this algorithm
set Combination(set S, integer l) {
CS = {}
for x in [0..2^l] {
n = {}
for i in [0..l] {
n = n U {floor(x / |S|^i) mod |S|} // get the i-th digit in x base |S|
}
CS = CS U {S[n]}
}
return filter(CS) // filtering described above
}
The question:
Given any string, add the least amount of characters possible to make it a palindrome in linear time.
I'm only able to come up with a O(N2) solution.
Can someone help me with an O(N) solution?
Revert the string
Use a modified Knuth-Morris-Pratt to find the latest match (simplest modification would be to just append the original string to the reverted string and ignore matches after len(string).
Append the unmatched rest of the reverted string to the original.
1 and 3 are obviously linear and 2 is linear beacause Knuth-Morris-Pratt is.
If only appending is allowed
A Scala solution:
def isPalindrome(s: String) = s.view.reverse == s.view
def makePalindrome(s: String) =
s + s.take((0 to s.length).find(i => isPalindrome(s.substring(i))).get).reverse
If you're allowed to insert characters anywhere
Every palindrome can be viewed as a set of nested letter pairs.
a n n a b o b
| | | | | * |
| -- | | |
--------- -----
If the palindrome length n is even, we'll have n/2 pairs. If it is odd, we'll have n/2 full pairs and one single letter in the middle (let's call it a degenerated pair).
Let's represent them by pairs of string indexes - the left index counted from the left end of the string, and the right index counted from the right end of the string, both ends starting with index 0.
Now let's write pairs starting from the outer to the inner. So in our example:
anna: (0, 0) (1, 1)
bob: (0, 0) (1, 1)
In order to make any string a palindrome, we will go from both ends of the string one character at a time, and with every step, we'll eventually add a character to produce a correct pair of identical characters.
Example:
Assume the input word is "blob"
Pair (0, 0) is (b, b) ok, nothing to do, this pair is fine. Let's increase the counter.
Pair (1, 1) is (l, o). Doesn't match. So let's add "o" at position 1 from the left. Now our word became "bolob".
Pair (2, 2). We don't need to look even at the characters, because we're pointing at the same index in the string. Done.
Wait a moment, but we have a problem here: in point 2. we arbitrarily chose to add a character on the left. But we could as well add a character "l" on the right. That would produce "blolb", also a valid palindrome. So does it matter? Unfortunately it does because the choice in earlier steps may affect how many pairs we'll have to fix and therefore how many characters we'll have to add in the future steps.
Easy algorithm: search all the possiblities. That would give us a O(2^n) algorithm.
Better algorithm: use Dynamic Programming approach and prune the search space.
In order to keep things simpler, now we decouple inserting of new characters from just finding the right sequence of nested pairs (outer to inner) and fixing their alignment later. So for the word "blob" we have the following possibilities, both ending with a degenerated pair:
(0, 0) (1, 2)
(0, 0) (2, 1)
The more such pairs we find, the less characters we will have to add to fix the original string. Every full pair found gives us two characters we can reuse. Every degenerated pair gives us one character to reuse.
The main loop of the algorithm will iteratively evaluate pair sequences in such a way, that in step 1 all valid pair sequences of length 1 are found. The next step will evaluate sequences of length 2, the third sequences of length 3 etc. When at some step we find no possibilities, this means the previous step contains the solution with the highest number of pairs.
After each step, we will remove the pareto-suboptimal sequences. A sequence is suboptimal compared to another sequence of the same length, if its last pair is dominated by the last pair of the other sequence. E.g. sequence (0, 0)(1, 3) is worse than (0, 0)(1, 2). The latter gives us more room to find nested pairs and we're guaranteed to find at least all the pairs that we'd find for the former. However sequence (0, 0)(1, 2) is neither worse nor better than (0, 0)(2, 1). The one minor detail we have to beware of is that a sequence ending with a degenerated pair is always worse than a sequence ending with a full pair.
After bringing it all together:
def makePalindrome(str: String): String = {
/** Finds the pareto-minimum subset of a set of points (here pair of indices).
* Could be done in linear time, without sorting, but O(n log n) is not that bad ;) */
def paretoMin(points: Iterable[(Int, Int)]): List[(Int, Int)] = {
val sorted = points.toSeq.sortBy(identity)
(List.empty[(Int, Int)] /: sorted) { (result, e) =>
if (result.isEmpty || e._2 <= result.head._2)
e :: result
else
result
}
}
/** Find all pairs directly nested within a given pair.
* For performance reasons tries to not include suboptimal pairs (pairs nested in any of the pairs also in the result)
* although it wouldn't break anything as prune takes care of this. */
def pairs(left: Int, right: Int): Iterable[(Int, Int)] = {
val builder = List.newBuilder[(Int, Int)]
var rightMax = str.length
for (i <- left until (str.length - right)) {
rightMax = math.min(str.length - left, rightMax)
val subPairs =
for (j <- right until rightMax if str(i) == str(str.length - j - 1)) yield (i, j)
subPairs.headOption match {
case Some((a, b)) => rightMax = b; builder += ((a, b))
case None =>
}
}
builder.result()
}
/** Builds sequences of size n+1 from sequence of size n */
def extend(path: List[(Int, Int)]): Iterable[List[(Int, Int)]] =
for (p <- pairs(path.head._1 + 1, path.head._2 + 1)) yield p :: path
/** Whether full or degenerated. Full-pairs save us 2 characters, degenerated save us only 1. */
def isFullPair(pair: (Int, Int)) =
pair._1 + pair._2 < str.length - 1
/** Removes pareto-suboptimal sequences */
def prune(sequences: List[List[(Int, Int)]]): List[List[(Int, Int)]] = {
val allowedHeads = paretoMin(sequences.map(_.head)).toSet
val containsFullPair = allowedHeads.exists(isFullPair)
sequences.filter(s => allowedHeads.contains(s.head) && (isFullPair(s.head) || !containsFullPair))
}
/** Dynamic-Programming step */
#tailrec
def search(sequences: List[List[(Int, Int)]]): List[List[(Int, Int)]] = {
val nextStage = prune(sequences.flatMap(extend))
nextStage match {
case List() => sequences
case x => search(nextStage)
}
}
/** Converts a sequence of nested pairs to a palindrome */
def sequenceToString(sequence: List[(Int, Int)]): String = {
val lStr = str
val rStr = str.reverse
val half =
(for (List(start, end) <- sequence.reverse.sliding(2)) yield
lStr.substring(start._1 + 1, end._1) + rStr.substring(start._2 + 1, end._2) + lStr(end._1)).mkString
if (isFullPair(sequence.head))
half + half.reverse
else
half + half.reverse.substring(1)
}
sequenceToString(search(List(List((-1, -1)))).head)
}
Note: The code does not list all the palindromes, but gives only one example, and it is guaranteed it has the minimum length. There usually are more palindromes possible with the same minimum length (O(2^n) worst case, so you probably don't want to enumerate them all).
O(n) time solution.
Algorithm:
Need to find the longest palindrome within the given string that contains the last character. Then add all the character that are not part of the palindrome to the back of the string in reverse order.
Key point:
In this problem, the longest palindrome in the given string MUST contain the last character.
ex:
input: abacac
output: abacacaba
Here the longest palindrome in the input that contains the last letter is "cac". Therefore add all the letter before "cac" to the back in reverse order to make the entire string a palindrome.
written in c# with a few test cases commented out
static public void makePalindrome()
{
//string word = "aababaa";
//string word = "abacbaa";
//string word = "abcbd";
//string word = "abacac";
//string word = "aBxyxBxBxyxB";
//string word = "Malayal";
string word = "abccadac";
int j = word.Length - 1;
int mark = j;
bool found = false;
for (int i = 0; i < j; i++)
{
char cI = word[i];
char cJ = word[j];
if (cI == cJ)
{
found = true;
j--;
if(mark > i)
mark = i;
}
else
{
if (found)
{
found = false;
i--;
}
j = word.Length - 1;
mark = j;
}
}
for (int i = mark-1; i >=0; i--)
word += word[i];
Console.Write(word);
}
}
Note that this code will give you the solution for least amount of letter to APPEND TO THE BACK to make the string a palindrome. If you want to append to the front, just have a 2nd loop that goes the other way. This will make the algorithm O(n) + O(n) = O(n). If you want a way to insert letters anywhere in the string to make it a palindrome, then this code will not work for that case.
I believe #Chronical's answer is wrong, as it seems to be for best case scenario, not worst case which is used to compute big-O complexity. I welcome the proof, but the "solution" doesn't actually describe a valid answer.
KMP finds a matching substring in O(n * 2k) time, where n is the length of the input string, and k substring we're searching for, but does not in O(n) time tell you what the longest palindrome in the input string is.
To solve this problem, we need to find the longest palindrome at the end of the string. If this longest suffix palindrome is of length x, the minimum number of characters to add is n - x. E.g. the string aaba's longest suffix substring is aba of length 3, thus our answer is 1. The algorithm to find out if a string is a palindrome takes O(n) time, whether using KMP or the more efficient and simple algorithm (O(n/2)):
Take two pointers, one at the first character and one at the last character
Compare the characters at the pointers, if they're equal, move each pointer inward, otherwise return false
When the pointers point to the same index (odd string length), or have overlapped (even string length), return true
Using the simple algorithm, we start from the entire string and check if it's a palindrome. If it is, we return 0, and if not, we check the string string[1...end], string[2...end] until we have reached a single character and return n - 1. This results in a runtime of O(n^2).
Splitting up the KMP algorithm into
Build table
Search for longest suffix palindrome
Building the table takes O(n) time, and then each check of "are you a palindrome" for each substring from string[0...end], string[1...end], ..., string[end - 2...end] each takes O(n) time. k in this case is the same factor of n that the simple algorithm takes to check each substring, because it starts as k = n, then goes through k = n - 1, k = n - 2... just the same as the simple algorithm did.
TL; DR:
KMP can tell you if a string is a palindrome in O(n) time, but that supply an answer to the question, because you have to check if all substrings string[0...end], string[1...end], ..., string[end - 2...end] are palindromes, resulting in the same (but actually worse) runtime as a simple palindrome-check algorithm.
#include<iostream>
#include<string>
using std::cout;
using std::endl;
using std::cin;
int main() {
std::string word, left("");
cin >> word;
size_t start, end;
for (start = 0, end = word.length()-1; start < end; end--) {
if (word[start] != word[end]) {
left.append(word.begin()+end, 1 + word.begin()+end);
continue;
}
left.append(word.begin()+start, 1 + word.begin()+start), start++;
}
cout << left << ( start == end ? std::string(word.begin()+end, 1 + word.begin()+end) : "" )
<< std::string(left.rbegin(), left.rend()) << endl;
return 0;
}
Don't know if it appends the minimum number, but it produces palindromes
Explained:
We will start at both ends of the given string and iterate inwards towards the center.
At each iteration, we check if each letter is the same, i.e. word[start] == word[end]?.
If they are the same, we append a copy of the variable word[start] to another string called left which as it name suggests will serve as the left hand side of the new palindrome string when iteration is complete. Then we increment both variables (start)++ and (end)-- towards the center
In the case that they are not the same, we append a copy of of the variable word[end] to the same string left
And this is the basics of the algorithm until the loop is done.
When the loop is finished, one last check is done to make sure that if we got an odd length palindrome, we append the middle character to the middle of the new palindrome formed.
Note that if you decide to append the oppoosite characters to the string left, the opposite about everything in the code becomes true; i.e. which index is incremented at each iteration and which is incremented when a match is found, order of printing the palindrome, etc. I don't want to have to go through it again but you can try it and see.
The running complexity of this code should be O(N) assuming that append method of the std::string class runs in constant time.
If some wants to solve this in ruby, The solution can be very simple
str = 'xcbc' # Any string that you want.
arr1 = str.split('')
arr2 = arr1.reverse
count = 0
while(str != str.reverse)
count += 1
arr1.insert(count-1, arr2[count-1])
str = arr1.join('')
end
puts str
puts str.length - arr2.count
I am assuming that you cannot replace or remove any existing characters?
A good start would be reversing one of the strings and finding the longest-common-substring (LCS) between the reversed string and the other string. Since it sounds like this is a homework or interview question, I'll leave the rest up to you.
Here see this solution
This is better than O(N^2)
Problem is sub divided in to many other sub problems
ex:
original "tostotor"
reversed "rototsot"
Here 2nd position is 'o' so dividing in to two problems by breaking in to "t" and "ostot" from the original string
For 't':solution is 1
For 'ostot':solution is 2 because LCS is "tot" and characters need to be added are "os"
so total is 2+1 = 3
def shortPalin( S):
k=0
lis=len(S)
for i in range(len(S)/2):
if S[i]==S[lis-1-i]:
k=k+1
else :break
S=S[k:lis-k]
lis=len(S)
prev=0
w=len(S)
tot=0
for i in range(len(S)):
if i>=w:
break;
elif S[i]==S[lis-1-i]:
tot=tot+lcs(S[prev:i])
prev=i
w=lis-1-i
tot=tot+lcs(S[prev:i])
return tot
def lcs( S):
if (len(S)==1):
return 1
li=len(S)
X=[0 for x in xrange(len(S)+1)]
Y=[0 for l in xrange(len(S)+1)]
for i in range(len(S)-1,-1,-1):
for j in range(len(S)-1,-1,-1):
if S[i]==S[li-1-j]:
X[j]=1+Y[j+1]
else:
X[j]=max(Y[j],X[j+1])
Y=X
return li-X[0]
print shortPalin("tostotor")
Using Recursion
#include <iostream>
using namespace std;
int length( char str[])
{ int l=0;
for( int i=0; str[i]!='\0'; i++, l++);
return l;
}
int palin(char str[],int len)
{ static int cnt;
int s=0;
int e=len-1;
while(s<e){
if(str[s]!=str[e]) {
cnt++;
return palin(str+1,len-1);}
else{
s++;
e--;
}
}
return cnt;
}
int main() {
char str[100];
cin.getline(str,100);
int len = length(str);
cout<<palin(str,len);
}
Solution with O(n) time complexity
public static void main(String[] args) {
String givenStr = "abtb";
String palindromeStr = covertToPalindrome(givenStr);
System.out.println(palindromeStr);
}
private static String covertToPalindrome(String str) {
char[] strArray = str.toCharArray();
int low = 0;
int high = strArray.length - 1;
int subStrIndex = -1;
while (low < high) {
if (strArray[low] == strArray[high]) {
high--;
} else {
high = strArray.length - 1;
subStrIndex = low;
}
low++;
}
return str + (new StringBuilder(str.substring(0, subStrIndex+1))).reverse().toString();
}
// string to append to convert it to a palindrome
public static void main(String args[])
{
String s=input();
System.out.println(min_operations(s));
}
static String min_operations(String str)
{
int i=0;
int j=str.length()-1;
String ans="";
while(i<j)
{
if(str.charAt(i)!=str.charAt(j))
{
ans=ans+str.charAt(i);
}
if(str.charAt(i)==str.charAt(j))
{
j--;
}
i++;
}
StringBuffer sd=new StringBuffer(ans);
sd.reverse();
return (sd.toString());
}