How would you make a set B a subset of A - set

I have seen plenty of examples stating how to find the subsets of a given set but how would you make a set sub to another? So Set B is a subset of set A, how would this be implemented? I'm currently working with scheme for the recursive nature but the book only showed how to list subsets not how to make a subset.
Edit: Book i am using is "the little schemer"

If you know both A and B, then there is nothing to make. Either one is a subset of the other or not.
You can find out whether this is the case with e. g. subset? in Racket, lset<= in Guile Scheme, subsetp in Common Lisp. If you can't find a ready made function in your language and implementation, you can also test whether exactly one of the set-differences (A without B and B without A) is empty.

Related

Show that the language is undecidable

Consider the language
Consider the language
Aabb = {< M > | M is a TM, and M accepts abb}
a) What is the computational problem that is represented by Aabb?
b) Show that Aabb is undecidable.
I tried proving it but didn't know what to do.
You can use Rice's theorem directly and correctly prove the claim by noting that some TMs accept aab, some don't, and acceptance of abb is a semantic property of languages (it has to do only with the strings accepted, not the manner of accepting them). Rice guarantees this language is undecidable.
If you want another kind of proof, consider the following. There's nothing special about the string abb. If this problem is decidable, we'd expect the problem to be decidable for any arbitrary string. If it were decidable for any arbitrary string, we could use dovetailing to decide whether the language of the TM were empty. If we could decide whether the language of a TM were empty, we could take any TM, change all instances of halt-reject to halt-accept, and then decide whether the TM halts on at least one input. Etc. Etc. Basically, you can construct a chain of implications as long as you want but you quickly find known undecidable problems you can reduce to.

Solve specific combination in propositional logic rule set (SAT Solver)

In the car industry you have thousand of different variants of components available to choose from when you buy a car. Not every component is combinable, so for each car there exist a lot of rules that are expressed in propositional logic. In my case each car has between 2000 and 4000 rules.
They look like this:
A → B ∨ C ∨ D
C → ¬F
F ∧ G → D
...
where "∧" = "and" / "∨" = "or" / "¬" = "not" / "→" = "implication".
With the tool "limboole" (http://fmv.jku.at/limboole/) I am able to to convert the propositional logic expressions into conjunctive normal form (CNF). This is needed in case I have to use a SAT solver.
Now, I would like to check the buildability feasibility for specific components within the rule set. For example, for each of the following expressions or combinations, I would like to check if the are feasible within the rule set.
(A) ∧ (B)
(A) ∧ (C ∨ F)
(B ∨ G)
...
My question is how to solve this problem. I asked a similar questions before (Tool to solve propositional logic / boolean expressions (SAT Solver?)), but with a different focus and now I am stuck again. Or I just do not understand it.
One option is to calculate all solutions with an ALLSAT approach of the rule set. Then I could check if each combination is part of any solution. If yes, I can derive that this specific combination is feasible.
Another option would be, that I add the combination to the rule set and then run a normal SAT solver. But I would have to do it for each expression I want to check.
What do you think is the most elegant or rather easiest way to solve this problem?
The best method which is known to me is to use "incremental solving under assumptions" technique. It was motivated by the same problem you have: multiple SAT instances (CNF formulae) which have some common subformulae.
Formally, you have some core Boolean formula C in CNF. And you have a set of assumptions {A_i}, i=1..n, where A_i is a Boolean formula in CNF also.
On the step 0 you provide to the solver your core formula C. It tries to solve it, says a result to you and save its state (lets call this state as core-state). If formula C is satisfiable, on the step i you provide assumption A_i to the solver and it continues its execution from the core-state. Actually, it tries to solve a formula C ∧ A_i but not from the beginning.
You can find a bunch of papers related to this topic easily, where much information is located. Also, you can check you favorite SAT-solver for the support of this technique.

Knights and Knives Logical Proposition

I have a question regarding Knights and Knaves and logical proposition. If I want to solve the puzzle and I assume I have two kinds of citizens: Knights, who always tell the truth, and knaves, who always tell lies. On the basis of utterances from some citizens, I must decide what kind they are.
There are three kinds of citizens: a, b and c, who are talking about themselves:
a says: ”All of us are knaves.”
b says: ”Exactly one of us is a knight.”
To solve the puzzle I should determine: What kinds of citizens are a, b and c? I should solve the puzzle by modelling the two utterances above using propositional logic, and I assume that I can use p to describe a knight and ¬p to describe a knave. How would I go about doing that? Any hint for someone who hasn't done any noticeable discrete mathematics in college?
A and C are Knaves. B is a Knight.
If A is a Knight, "All of us are knaves" is true. So, A would also be a Knave. This is a contradiction. Hence, A is a Knave.
If B is a Knave, then "Exactly one of us is a knight." is false. Meaning that 2 or more are Knights. But neither A nor B is a Knight. How can possibly be 2 or more Knights (since C is the only one with a possibility of being a Knight). This is also a contradiction. So, B is a Knight.
We just showed that B is a Knight. So, he himself is the only Knight he is talking about. So, C is a Knave.
Now, I don't think you can model this argument in the Propositional Logic. For one, notice the universal and existential quantifiers ("All" and "Exactly One") in the statements "All of us are knaves" and "Exactly one of us is a knight.". For another one, notice that A and B are talking about themselves. Modeling situations like this is one of the hardest problems in the history (not kidding!). Look at the following links for more info:
https://en.wikipedia.org/wiki/Liar_paradox
https://en.wikipedia.org/wiki/Self-reference
you can create a Truth table,
by first look at it i can say A must be knave, and B is a knight. because if A is a knight he can't say he's a knave(lie), also he can't be right about that all are knaves (can't say the truth) so B is a knight(if B Knave he can't say the truth that makes A a liar and he must be one) and then C is a Knave.

How to define set in coq without defining set as a list of elements

I am trying to define (1,2,3) as a set of elements in coq. I can define it using list as (1 :: (2 :: (3 :: nil))). Is there any way to define set in coq without using list.
The are basically four possible choices to be made when defining sets in Coq depending on your constraints on the base type of the set and computation needs:
If the base type doesn't have decidable equality, it is common to use:
Definition Set A := A -> Prop
Definition cup A B := fun x => A x /\ B x.
...
basically, Coq's Ensembles. This representation cannot "compute", as we can't even decide if two elements are equal.
If the base data type has decidable equality, then there are two choices depending if extensionality is wanted:
Extensionality means that two sets are equal in Coq's logic iff they have the same elements, formally:
forall (A B : set T), (A = B) <-> (forall x, x \in A <-> x \in B).
If extensionality is wanted, sets should be represented by a canonically-sorted duplicate-free structure, usually a list. A good example is Cyril's Cohen finmap library. This representation however is very inefficient for computing as re-sorting is needed every time a set is modified.
If extensionality is not needed (usually a bad idea if proofs are wanted), you can use representations based on binary trees such as Coq's MSet, which are similar to standard Functional Programming set implementations and can work efficiently.
Finally, when the base type is finite, the set of all sets is a finite type too. The best example of this approach is IMO math-comp's finset, which encodes finite sets as the space of finitely supported membership functions, which is extensional, and forms a complete lattice.
The standard library of coq provides the following finite set modules:
Coq.MSets abstracts away the implementation details of the set. For instance, there is an implementation that uses AVL trees and another based on lists.
Coq.FSets abstracts away the implementation details of the set; it is a previous version of MSets.
Coq.Lists.ListSet is an encoding of lists as sets, which I am including for the sake of completeness
Here is an example on how to define a set with FSets:
Require Import Coq.Structures.OrderedTypeEx.
Require Import Coq.FSets.FSetAVL.
Module NSet := FSetAVL.Make Nat_as_OT.
(* Creates a set with only element 3 inside: *)
Check (NSet.add 3 NSet.empty).
There are many encodings of sets in Coq (lists, function, trees, ...) which can be finite or not. You should have a look at Coq's standard library. For example the 'simplest' set definition I know is this one

Prove ¬(¬a = a)

This looks like such an easy problem but still can't figure it out. How do I prove ¬(¬a = a)?
No given premises.
I got this so far (in Fitch):
This is a subproof where I assume the negation of my goal and then try to reach the absurd/contradiction so I can state the negation of my assumption, which would be my goal.
Thanks in advance!
Looking at your screenshot I'd say your =Intro introduces a variable a (that is, a is an object of the domain, rather than a predicate).
I say this because
in all books I've read, the =Intro rule is used for objects rather than predicates, and
for predicates, equals is expressed as "if and only if" which is typically written as ↔ and not =.
So, in other words, the only sensible interpretation of ¬(¬a = a) is that = binds harder than ¬, and the whole formula should be interpreted as ¬(¬(a = a)).
Now you should be able to
introduce a = a
assume the contrary: ¬(a = a)
arrive at a contradiction, ⊥, based on 1. and 2.
Use ¬Intro on 2 and 3 to get ¬(¬(a = a)).

Resources