How to generate between 1 and n random numbers (positive integers greater than 0) which sum up to exactly n?
Example results if n=10:
10
2,5,3
1,1,1,1,1,1,1,1,1,1
1,1,5,1,1,1
Each of the permutations should have the same probability of occurring, however, I don't need it to be mathematically precise. So if the probabilities are not the same due to some modulo error, I don't care.
Is there a go-to algorithm for this? I only found algorithms where the number of values is fixed (i.e., give me exactly m random numbers which sum up to n).
Imagine the number n as a line built of n equal, indivisible sections. Your numbers are lengths of those sections that sum up to the whole. You can cut the original length between any two sections, or none.
This means there are n-1 potential cut points.
Choose a random n-1-bit number, that is a number between 0 and 2^(n-1); its binary representation tells you where to cut.
0 : 000 : [-|-|-|-] : 1,1,1,1
1 : 001 : [-|-|- -] : 1,1,2
3 : 011 : [-|- - -] : 1,3
5 : 101 : [- -|- -] : 2,2
7 : 111 : [- - - -] : 4
etc.
Implementation in python-3
import random
def perm(n, np):
p = []
d = 1
for i in range(n):
if np % 2 == 0:
p.append(d)
d = 1
else:
d += 1
np //= 2
return p
def test(ex_n):
for ex_p in range(2 ** (ex_n - 1)):
p = perm(ex_n, ex_p)
print(len(p), p)
def randperm(n):
np = random.randint(0, 2 ** (n - 1))
return perm(n, np)
print(randperm(10))
you can verify it by generating all possible solutions for small n
test(4)
output:
4 [1, 1, 1, 1]
3 [2, 1, 1]
3 [1, 2, 1]
2 [3, 1]
3 [1, 1, 2]
2 [2, 2]
2 [1, 3]
1 [4]
Use a modulo.
This should make your day:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main()
{
srand(time(0));
int n=10;
int x=0; /* sum of previous random number */
while (x<n) {
int r = rand() % (n-x) + 1;
printf("%d ", r);
x += r;
}
/* done */
printf("\n");
}
Example output:
10
1 1 8
3 4 1 1 1
6 3 1
9 1
6 1 1 1 1
5 4 1
Generate Random Integers With Fixed Sum
Method One: Multinomial Distribution
Deviation cannot be controlled strictly within the desired range.
# Python
import numpy as np
_sum = 800
n = 16
rnd_array = np.random.multinomial(_sum, np.ones(n)/n, size=1)[0]
print('Array:', rnd_array, ', Sum:', sum(rnd_array))
# returns Array: [64 41 57 49 48 44 46 44 40 55 58 54 54 54 39 53] , Sum: 800
Method Two: Random Integer Generator Within Lower and Upper Bounds
To control the deviation
# Python
import random
def generate_random_integers(_sum, n):
mean = _sum / n
variance = int(5 * mean)
min_v = mean - variance
max_v = mean + variance
array = [min_v] * n
diff = _sum - min_v * n
while diff > 0:
a = random.randint(0, n - 1)
if array[a] >= max_v:
continue
array[a] += 1
diff -= 1
return np.array([int(number) for number in array])
_sum = 800
n = 16
rnd_array = generate_random_integers(_sum, n)
print('Array:', rnd_array, ', Sum:', sum(rnd_array))
# Returns Array: [45 46 46 58 53 77 33 53 39 38 44 51 33 60 75 49] , Sum: 800
Archived from http://sunny.today/generate-random-integers-with-fixed-sum/
Related
Given an integer N, how to efficiently find the count of numbers which are divisible by 7 (their reverse should also be divisible by 7) in the range:
[0, 10^N - 1]
Example:
For N=2, answer:
4 {0, 7, 70, 77}
[All numbers from 0 to 99 which are divisible by 7 (also their reverse is divisible)]
My approach, simple brute-force:
initialize count to zero
run a loop from i=0 till end
if a(i) % 7 == 0 && reverse(a(i)) % 7 == 0, then we increase the count
Note:
reverse(123) = 321, reverse(1200) = 21, for example!
Let's see what happens mod 7 when we add a digit, d, to a prefix, abc.
10 * abc + d =>
(10 mod 7 * abc mod 7) mod 7 + d mod 7
reversed number:
abc + d * 10^(length(prefix) =>
abc mod 7 + (d mod 7 * 10^3 mod 7) mod 7
Note is that we only need the count of prefixes of abc mod 7 for each such remainder, not the actual prefixes.
Let COUNTS(n,f,r) be the number of n-digit numbers such that n%7 = f and REVERSE(n)%7 = r
The counts are easy to calculate for n=1:
COUNTS(1,f,r) = 0 when f!=r, since a 1-digit number is the same as its reverse.
COUNTS(1,x,x) = 1 when x >= 3, and
COUNTS(1,x,x) = 2 when x < 3, since 7%3=0, 8%3=1, and 9%3=2
The counts for other lengths can be figured out by calculating what happens when you add each digit from 0 to 9 to the numbers characterized by the previous counts.
At the end, COUNTS(N,0,0) is the answer you are looking for.
In python, for example, it looks like this:
def getModCounts(len):
counts=[[0]*7 for i in range(0,7)]
if len<1:
return counts
if len<2:
counts[0][0] = counts[1][1] = counts[2][2] = 2
counts[3][3] = counts[4][4] = counts[5][5] = counts[6][6] = 1
return counts
prevCounts = getModCounts(len-1)
for f in range(0,7):
for r in range(0,7):
c = prevCounts[f][r]
rplace=(10**(len-1))%7
for newdigit in range(0,10):
newf=(f*10 + newdigit)%7
newr=(r + newdigit*rplace)%7
counts[newf][newr]+=c
return counts
def numFwdAndRevDivisible(len):
return getModCounts(len)[0][0]
#TEST
for i in range(0,20):
print("{0} -> {1}".format(i, numFwdAndRevDivisible(i)))
See if it gives the answers you're expecting. If not, maybe there's a bug I need to fix:
0 -> 0
1 -> 2
2 -> 4
3 -> 22
4 -> 206
5 -> 2113
6 -> 20728
7 -> 205438
8 -> 2043640
9 -> 20411101
10 -> 204084732
11 -> 2040990205
12 -> 20408959192
13 -> 204085028987
14 -> 2040823461232
15 -> 20408170697950
16 -> 204081640379568
17 -> 2040816769367351
18 -> 20408165293673530
19 -> 204081641308734748
This is a pretty good answer when counting up to N is reasonable -- way better than brute force, which counts up to 10^N.
For very long lengths like N=10^18 (you would probably be asked for a the count mod 1000000007 or something), there is a next-level answer.
Note that there is a linear relationship between the counts for length n and the counts for length n+1, and that this relationship can be represented by a 49x49 matrix. You can exponentiate this matrix to the Nth power using exponentiation by squaring in O(log N) matrix multiplications, and then just multiply by the single digit counts to get the length N counts.
There is a recursive solution using digit dp technique for any digits.
long long call(int pos , int Mod ,int revMod){
if(pos == len ){
if(!Mod && !revMod)return 1;
return 0;
}
if(dp[pos][Mod][revMod] != -1 )return dp[pos][Mod][revMod] ;
long long res =0;
for(int i= 0; i<= 9; i++ ){
int revValue =(base[pos]*i + revMod)%7;
int curValue = (Mod*10 + i)%7;
res += call(pos+1, curValue,revValue) ;
}
return dp[pos][Mod][revMod] = res ;
}
I need help with the following problem.
Given an integer m, I need to find the number of positive integers n and the integers, such that the factorial of n ends with exactly m zeroes.
I wrote this code it works fine and i get the right output, but it take way too much time as the numbers increase.
a = input()
while a:
x = []
m, n, fact, c, j = input(), 0, 1, 0, 0
z = 10*m
t = 10**m
while z - 1:
fact = 1
n = n + 1
for i in range(1, n + 1):
fact = fact * i
if fact % t == 0 and ((fact / t) % 10) != 0:
x.append(int(n))
c = c + 1
z = z - 1
for p in range(c):
print x[p],
a -= 1
print c
Could someone suggest me a more efficient way to do this. Presently, it takes 30 seconds for a test case asking for numbers with 250 trailing zeros in its factorial.
Thanks
To get number of trailing zeroes of n! efficiently you can put
def zeroes(value):
result = 0;
d = 5;
while (d <= value):
result += value // d; # integer division
d *= 5;
return result;
...
# 305: 1234! has exactly 305 trailing zeroes
print zeroes(1234)
In order to solve the problem (what numbers have n trailing zeroes in n!) you can use these facts:
number of zeroes is a monotonous function: f(x + a) >= f(x) if a >= 0.
if f(x) = y then x <= y * 5 (we count only 5 factors).
if f(x) = y then x >= y * 4 (let me leave this for you to prove)
Then implement binary search (on monotonous function).
E.g. in case of 250 zeroes we have the initial range to test [4*250..5*250] == [1000..1250]. Binary search narrows the range down into [1005..1009].
1005, 1006, 1007, 1008, 1009 are all numbers such that they have exactly 250 trainling zeroes in factorial
Edit I hope I don't spoil the fun if I (after 2 years) prove the last conjecture (see comments below):
Each 5**n within facrtorial when multiplied by 2**n produces 10**n and thus n zeroes; that's why f(x) is
f(x) = [x / 5] + [x / 25] + [x / 125] + ... + [x / 5**n] + ...
where [...] stands for floor or integer part (e.g. [3.1415926] == 3). Let's perform easy manipulations:
f(x) = [x / 5] + [x / 25] + [x / 125] + ... + [x / 5**n] + ... <= # removing [...]
x / 5 + x / 25 + x / 125 + ... + x / 5**n + ... =
x * (1/5 + 1/25 + 1/125 + ... + 1/5**n + ...) =
x * (1/5 * 1/(1 - 1/5)) =
x * 1/5 * 5/4 =
x / 4
So far so good
f(x) <= x / 4
Or if y = f(x) then x >= 4 * y Q.E.D.
Focus on the number of 2s and 5s that makes up a number. e.g. 150 is made up of 2*3*5*5, there 1 pair of 2&5 so there's one trailing zero. Each time you increase the tested number, try figuring out how much 2 and 5s are in the number. From that, adding up previous results you can easily know how much zeros its factorial contains.
For example, 15!=15*...*5*4*3*2*1, starting from 2:
Number 2s 5s trailing zeros of factorial
2 1 0 0
3 1 0 0
4 2 0 0
5 2 1 1
6 3 1 1
...
10 5 2 2
...
15 7 3 3
..
24 12 6 6
25 12 8 8 <- 25 counts for two 5-s: 25 == 5 * 5 == 5**2
26 13 8 8
..
Refer to Peter de Rivaz's and Dmitry Bychenko's comments, they have got some good advices.
I'm doing a Ruby kata that asks me to find the sum of the digits of all the numbers from 1 to N (both ends included).
So if I had these inputs, I would get these outputs:
For N = 10 the sum is 1+2+3+4+5+6+7+8+9+(1+0) = 46
For N = 11 the sum is 1+2+3+4+5+6+7+8+9+(1+0)+(1+1) = 48
For N = 12 the sum is 1+2+3+4+5+6+7+8+9+(1+0)+(1+1) +(1+2)= 51
Now I know in my head what needs to be done. Below is the code that I have to solve this problem:
def solution(n)
if n <= 9
return n if n == 1
solution(n-1) + n
elsif n >= 10
45 + (10..n) #How can I grab the ones,tenths, and hundreds?
end
end
Basically everything is fine until I hit over 10.
I'm trying to find some sort of method that could do this. I searched Fixnum and Integer but I haven't found anything that could help me. I want is to find something like "string"[0] but of course without having to turn the integer back in forth between a string and integer. I know that there is a mathematical relationship there but I'm having a hard time trying to decipher that.
Any help would be appreciated.
You can use modulo and integer division to calculate it recursively:
def sum_digits(n)
return n if n < 10
(n % 10) + sum_digits(n / 10)
end
sum_digits(123)
# => 6
A beginner would probably do this:
123.to_s.chars.map(&:to_i)
# => [1, 2, 3]
but a more thoughtful person would do this:
n, a = 123, []
until n.zero?
n, r = n.divmod(10)
a.unshift(r)
end
a
# => [1, 2, 3]
Rather than computing the sum of the digits for each number in the range, and then summing those subtotals, I have computed the total using combinatorial methods. As such, it is much more efficient than straight enumeration.
Code
SUM_ONES = 10.times.with_object([]) { |i,a| a << i*(i+1)/2 }
S = SUM_ONES[9]
def sum_digits_nbrs_up_to(n)
pwr = n.to_s.size - 1
tot = n.to_s.chars.map(&:to_i).reduce(:+)
sum_leading_digits = 0
pwr.downto(0).each do |p|
pwr_term = 10**p
leading_digit = n/pwr_term
range_size = leading_digit * pwr_term
tot += sum_leading_digits * range_size +
sum_digits_to_pwr(leading_digit, p)
sum_leading_digits += leading_digit
n -= range_size
end
tot
end
def sum_digits_to_pwr(d, p)
case
when d.zero? && p.zero?
0
when d.zero?
10**(p-1) * S * d * p
when p.zero?
10**p * SUM_ONES[d-1]
else
10**p * SUM_ONES[d-1] + 10**(p-1) * S * d * p
end
end
Examples
sum_digits_nbrs_up_to(456) #=> 4809
sum_digits_nbrs_up_to(2345) #=> 32109
sum_digits_nbrs_up_to(43021) #=> 835759
sum_digits_nbrs_up_to(65827359463206357924639357824065821)
#=> 10243650329265398180347270847360769369
These calculations were all essentially instantaneous. I verified the totals for the first three examples by straight enumeration, using #sawa's method for calculating the sum of digits for each number in the range.
Explanation
The algorithm can best be explained with an example. Suppose n equals 2345.
We begin by defining the following functions:
t(n) : sum of all digits of all numbers between 1 and n, inclusive (the answer)
sum(d): sum of all digits between 1 and d, inclusive, (for d=1..9, sum(d) = 0, 1, 3, 6, 10, 15, 21, 28, 36, 45).
g(i) : sum of digits of the number i.
f(i,j): sum of all digits of all integers between i and j-1, inclusive.
g(m) : sum of digits of the number m.
h(d,p): sum of all digits of all numbers between 0 and d*(10^p)-1 (derived below).
Then (I explain the following below):
t(2345) = f(0-1999)+f(2000-2299)+f(2300-2339)+f(2340-2344)+g(2345)
f( 0-1999) = h(2,3) = h(2,3)
f(2000-2299) = 2 * (2299-2000+1) + h(3,2) = 600 + h(3,2)
f(2300-2339) = (2+3) * (2339-2300+1) + h(4,1) = 200 + h(4,1)
f(2340-2344) = (2+3+4) * (2344-2340+1) + h(5,0) = 45 + h(5,0)
g(2345) = 2+3+4+5 = 14
so
t(2345) = 859 + h(2,3) + h(3,2) + h(4,1) + h(5,0)
First consider f(2000-2299). The first digit, 2, appears in every number in the range (2000..2299); i.e., 300 times. The remaining three digits contribute (by definition) h(3,2) to the total:
f(2000-2299) = 2 * 300 + h(3,2)
For f(2300-2339) the first two digits, 2 and 3, are present in all 40 numbers in the range (2300..2339) and the remaining two digits contribute h(4,1) to the total:
f(2300-2339) = 5 * 40 + h(4,1)
For f(2340-2344), the first three digits, '2,3and4, are present in all four number in the range ``(2340-2344) and the last digit contributes h(5,0) to the total.
It remains to derive an expression for computing h(d,p). Again, this is best explained with an example.
Consider h(3,2), which is the sum of the all digits of all numbers between 0 and 299.
First consider the sum of digits for the first digit. 0, 1 and 2 are each the first digit for 100 numbers in the range 0-299. Hence, the first digit, summed, contributes
0*100 + 1*100 + 2*100 = sum(2) * 10^2
to the total. We now add the sum of digits for the remaining 2 digits. The 300 numbers each have 2 digits in the last two positions. Each of the digits 0-9 appears in 1/10th of 2 * 300 = 600 digits; i.e, 60 times. Hence, the sum of all digits in last 2 digit positions, over all 300 numbers, equals:
sum(9) * 2 * 300 / 10 = 45 * 2 * 30 = 2700.
More generally,
h(d,p) = sum(d-1) * 10**p + sum(9) * d * p * 10**(p-1) if d > 0 and p > 0
= sum(d-1) * 10**p if d > 0 and p == 0
= sum(9) * d * p * 10**(p-1) if d == 0 and p > 0
= 0 if d == 0 and p == 0
Applying this to the above example, we have
h(2,3) = sum(1) * 10**3 + (45 * 2 * 3) * 10**2 = 1 * 1000 + 270 * 100 = 28000
h(3,2) = sum(2) * 10**2 + (45 * 3 * 2) * 10**1 = 3 * 100 + 270 * 10 = 3000
h(4,1) = sum(3) * 10**1 + (45 * 4 * 1) * 10**0 = 6 * 10 + 180 * 1 = 240
h(5,0) = sum(4) * 10**0 = 10 * 1 = 10
Therefore
t(2345) = 859 + 28000 + 3000 + 240 + 10 = 32109
The code above implements this algorithm in a straightforward way.
I confirmed the results for the first three examples above by using using #sawa's code to determine the sum of the digits for each number in the range and then summed those totals:
def sum_digits(n)
a = []
until n.zero?
n, r = n.divmod(10)
a.unshift(r)
end
a.reduce(:+)
end
def check_sum_digits_nbrs_up_to(n)
(1..n).reduce(0) {|t,i| t + sum_digits(i) }
end
check_sum_digits_nbrs_up_to(2345) #=> 32109
I need to write a program to input a number and output its factorial's prime factorization in the form:
4!=(2^3)*(3^1)
5!=(2^3)*(3^1)*(5^1)
The problem is I still can't figure out how to get that result.
Apparently each first number in brackets is for the ascending prime numbers up until the actual factorial. The second number in brackets is the amount of times the number occurs in the factorial.
What I can't figure out is for example in 5!=(2^3)*(3^1)*(5^1), how does 2 only occur 3 times, 3 only 1 time and 5 only one time in 120 (5!=120).
I have now solved this thanks to the helpful people who commented but I'm now having trouble trying to figure out how could I take a number and get the factorial in this format without actually calculating the factorial.
Every number can be represented by a unique (up to re-ordering) multiplication of prime numbers, called the prime factorization of the number, as you are finding the prime factors that can uniquely create that number.
2^3=8
3^1=3
5^1=5
and 8*3*5=120
But this also means that: (2^3)*(3^1)*(5^1) = 120
It's not saying that 2 occurs 3 times as a digit in the number 120, which it obviously does not, but rather to multiply 2 by 2 by 2, for a total of 3 twos. Likewise for the 3 and 5, which occur once in the prime factorization of 120. The expression which you mention is showing you this unique prime factorization of the number 120. This is one way of getting the prime factorization of a number in Python:
def pf(number):
factors=[]
d=2
while(number>1):
while(number%d==0):
factors.append(d)
number=number/d
d+=1
return factors
Running it you get:
>>> pf(120)
[2, 2, 2, 3, 5]
Which multiplied together give you 120, as explained above. Here's a little diagram to illustrate this more clearly:
Consider e.g. 33!. It's a product of:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
the factors are:
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2
2 2
2
3 3 3 3 3 3 3 3 3 3 3
3 3 3
3
5 5 5 5 5 5
5
7 7 7 7
11 11 11
13 13
17
19
23
29 31
Do you see the pattern?
33! = 2^( 33 div 2 + 33 div 4 + 33 div 8 + 33 div 16 + 33 div 32) *
3^( 33 div 3 + 33 div 9 + 33 div 27) *
5^( 33 div 5 + 33 div 25) *
----
7^( 33 div 7) * 11^( 33 div 11) * 13^( 33 div 13) *
----
17 * 19 * 23 * 29 * 31
Thus, to find prime factorization of n! without doing any multiplications or factorizations, we just need to have the ordered list of primes not greater than n, which we process (with a repeated integer division and a possible summation) in three stages - primes that are smaller or equal to the square root of n; such that are smaller or equal to n/2; and the rest.
Actually with lazy evaluation it's even simpler than that. Assuming primes is already implemented returning a stream of prime numbers in order, in Haskell, factorial factorization is found as
ff n = [(p, sum . takeWhile (> 0) . tail . iterate (`div` p) $ n)
| p <- takeWhile (<= n) primes]
-- Prelude> ff 33
-- [(2,31),(3,15),(5,7),(7,4),(11,3),(13,2),(17,1),(19,1),(23,1),(29,1),(31,1)]
because 33 div 4 is (33 div 2) div 2, etc..
2^3 is another way of writing 23, or two to the third power. (2^3)(3^1)(5^1) = 23 × 3 × 5 = 120.
(2^3)(3^1)(5^1) is just the prime factorization of 120 expressed in plain ASCII text rather than with pretty mathematical formatting. Your assignment requires output in this form simply because it's easier for you to output than it would be for you to figure out how to output formatted equations (and probably because it's easier to process for grading).
The conventions used here for expressing equations in plain text are standard enough that you can directly type this text into google.com or wolframalpha.com and it will calculate the result as 120 for you: (2^3)(3^1)(5^1) on wolframalpha.com / (2^3)(3^1)(5^1) on google.com
WolframAlpha can also compute prime factorizations, which you can use to get test results to compare your program with. For example: prime factorization of 1000!
A naïve solution that actually calculates the factorial will only handle numbers up to 12 (if using 32 bit ints). This is because 13! is ~6.2 billion, larger than the largest number that can be represented in a 32 bit int.
However it's possible to handle much larger inputs if you avoid calculating the factorial first. I'm not going to tell you exactly how to do that because either figuring it out is part of your assignment or you can ask your prof/TAs. But below are some hints.
ab × ac = ab+c
equation (a) 10 = 21 × 51
equation (b) 15 = 31 × 51
10 × 15 = ? Answer using the right hand sides of equations (a) and (b), not with the number 150.
10 × 15 = (21 × 51) × (31 × 51) = 21 × 31 × (51 × 51) = 21 × 31 × 52
As you can see, computing the prime factorization of 10 × 15 can be done without multiplying 10 by 15; You can instead compute the prime factorization of the individual terms and then combine those factorizations.
If you write out the factorial 5!:
1 * 2 * 3 * 4 * 5,
you will notice that there is one non-prime number: 4. 4 can be written as 2 * 2 or 2^2, which is where the extra 2s come from.
Add up all of the occurrences (exponential forms are in parentheses; add exponents for like bases):
2 (2^1) * 3 (3^1) * 4 (2^2) * 5 (5^1), you get the proper answer.
You can use O(n/2 log log n) algorithm using only sums (no need precalc primes).
This is a sieve using relation
f = a * b ~> f^k = a^k * b^k
then, we reduce all initial factors 1 * 2 * 3 * ... * n moving k from big numbers to small numbers.
Using Sieve of Atkin the Will Ness algorithm could be better for very big n if not, I think it could be better
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
int n = atoi(argv[1]);
int *p = (int *) malloc(sizeof(int) * (n + 1));
int i, j, d;
for(i = 0; i <= n; i++)
p[i] = 1;
for(i = n >> 1; i > 1; i--)
if(p[i]) {
for(j = i + i, d = 2; j <= n; j += i, d++) {
if(p[j]) {
p[i] += p[j];
p[d] += p[j];
p[j] = 0;
}
}
}
printf("1");
for(i = 2; i <= n; i++)
if(p[i])
printf(" * %i^%i", i, p[i]);
printf("\n");
return 0;
}
Is there any efficient way to find the number of divisors of a number (say n) which are not smaller than another number (say m).
n can be up to 10^12.
i thought about sieve algorithm & then find the number of divisors.
my method check all the numbers from m to square root of n.
But i think there is another way(efficient) to do that .
It's easy to find the divisors of a number if you know the prime factors; just take all possible combinations of the multiplicities of all the factors.
For n as small as 10^12, trial division should be a sufficiently fast factorization method, as you only have to check potential factors up to 10^6.
Edit: add discussion about "all possible combinations" and factoring by trial division.
Consider the number 24505 = 5 * 13 * 13 * 29. To enumerate its divisors, take all possible combinations of the multiplicities of all the factors:
5^0 * 13^0 * 29^0 = 1
5^0 * 13^0 * 29^1 = 29
5^0 * 13^1 * 29^0 = 13
5^0 * 13^1 * 29^1 = 377
5^0 * 13^2 * 29^0 = 169
5^0 * 13^2 * 29^1 = 4901
5^1 * 13^0 * 29^0 = 5
5^1 * 13^0 * 29^1 = 145
5^1 * 13^1 * 29^0 = 65
5^1 * 13^1 * 29^1 = 1885
5^1 * 13^2 * 29^0 = 845
5^1 * 13^2 * 29^1 = 24505
It's also not hard to factor a number by trial division. Here's the algorithm, which you can translate to your favorite language; it's plenty fast enough for numbers up to 10^12:
function factors(n)
f = 2
while f * f <= n
if n % f == 0
output f
n = n / f
else
f = f + 1
output n
Let's look at the factorization of 24505. Initially f is 2, but 24505 % 2 = 1, so f is incremented to 3. Then f = 3 and f = 4 also fail to divide n, but 24505 % 5 = 0, so 5 is a factor of 24505 and n is reduced to 24505 / 5 = 4901. Now f = 5 is unchanged, but it fails to divide n, likewise 6, 7, 8, 9, 10, 11 and 12, but finally 4901 % 13 = 0, so 13 is a factor of 4901 (and also 24505), and n is reduced to 4901 / 13 = 377. At this point f = 13 is unchanged, and 13 is again a divisor, this time of the reduced n = 377, so another factor of 13 is output and n is reduced to 29. At this point 13 * 13 = 169 is greater than 29, so the while loop exits, and the final factor of 29 is output; this works because if n=pq, then one of p or q must be less than the square root of n (except in the case where p and q are equal and n is a perfect square), and since we have already done trial division by all the p and q less than the square root of 29, it must be prime, and thus the final factor. So we see that 24505 = 5 * 13 * 13 * 29.
I discuss these kinds of algorithms in my essay Programming with Prime Numbers.
Following is an example program that computes the number of divisors of n that are larger than m. The largeDivs() code runs in time O(c) if there are c divisors. largeDivs() also starts with a representation of n as a factored number, with nset being a list of pairs of form (p_i, k_i) such that n = Product{p_i**k_i for i in 1..h}. Some example output is shown after the program. The check() routine is used to demonstrate that largeDivs() produces correct results. check() takes a long time for smaller values of m.
def largeDivs(n, nset, m):
p, k = nset[-1]
dd = 0
if len(nset) > 1:
nn, mm = n / p**k, m
for i in range(k+1):
dd += largeDivs(nn, nset[:-1], mm)
mm = (mm + p-1)/p
else:
c, v = k+1, 1
while v<m and c>0:
c, v = c-1, v*p
return c
return dd
def check (n,m,s):
if m<1:
return s
c = 0
for i in range(m,n+1):
if (n%i)==0:
c += 1
return c
tset = [(2,3),(3,2),(11,1),(17,1),(23,2)]
n = s = 1
for i in tset:
s *= 1+i[1]
n *= i[0]**i[1]
print 'n=',n, ' s=',s
m=0
for i in range(8):
print 'm:', m, '\t', largeDivs(n, tset, m), ' Check:',check(n,m,s)
m = 10*m + 5
Example output:
n= 7122456 s= 144
m: 0 144 Check: 144
m: 5 140 Check: 140
m: 55 124 Check: 124
m: 555 95 Check: 95
m: 5555 61 Check: 61
m: 55555 28 Check: 28
m: 555555 9 Check: 9
m: 5555555 1 Check: 1
It depends on the application, but if performance is such an issue I'd use a pre-generated hash table. Obviously 10^12 entries might be impractical (or at least undesirable) to store in memory, so I'd do division tests up to the kth prime number, generating hash table entries only for numbers not divisible by those first k prime numbers.
For example, though crudely written and untested, this should give you an idea:
int number = 23456789;
int primes[] = {2, 3, 5, 7, 11, 13, 17, 19, 0};
int pfactors = 0;
int* prime = primes;
float temp;
// check until we reach the end of the array (0)
while (prime)
{
// divide by prime and check if result is integer
temp = (float)number/*prime;
if (temp == floor(temp))
{
// if so, increment count of prime factors and loop (same prime again!)
pfactors++;
number = (int)temp;
}
else
{
// else try the next prime
prime++;
}
}
// finally, rely on hash table magic
pfactors += pregenerated_hash[number];