Find the number of instructions of an algorithm - algorithm

Given this algorithm (a>0, b>0) :
while(a>=b){
k=1;
while(a>=k*b){
a = a - k*b;
k++;
}
}
My question : I have to find the time complexity of this algorithm and to do so, I must find the number of instructions but I couldn't find it. Is there a way to find this number and if not, how can I find its time complexity ?
What I have done : First of all I tried to find the number of iterations of the first loop and I found a pattern : a_i = a - (i(i+1)/2)*b where i is the number of iterations. I've spent hours doing some manipulations on it but I couldn't find anything relevant (I've found weird results like q² <= a/b < q²+q where q is the number of iterations).

You have correctly calculated that the value of a after the i-th iteration of the inner loop is:
Where a_j0 is the value of a at the start of the j-th outer loop. The stopping condition for the inner loop is:
Which can be solved as a quadratic inequality:
Therefore the inner loop is approximately O(sqrt(a_j0 / b)). The next starting value of a satisfies:
Scaling roughly as sqrt(2b * a_j0). It would be quite tedious to compute the time complexity exactly, so let's apply the above approximations from here on:
Where a_n replaces a_j0, and t_n is the run-time of the inner loop – and of course the total time complexity is just the sum of t_n. Note that the first term is given by n = 1, and that the input value of a is defined to be a_0.
Before directly solving this recurrence, note that since the second term t_2 is already proportional to the square root of the first t_1, the latter dominates all other terms in the sum.
The total time complexity is therefore just O(sqrt(a / b)).
Update: numerical tests.
Note that, since all changes in the value of a are proportional to b, and all loop conditions are also proportional to b, the function can be "normalized" by setting b = 1 and only varying a.
Javascript test function, which measures the number of times that the inner loop executes:
function T(n)
{
let t = 0, k = 0;
while (n >= 1) {
k = 1;
while (n >= k) {
n -= k;
k++; t++;
}
}
return t;
}
Plot of sqrt(n) against T(n):
A convincing straight line which confirms that the time complexity is indeed half-power.

Related

How can we find the Time Complexity of the Algorithm

I want to know about the time complexity of the given code below, I have a doubt it is O of root n
i = n, sum = 0
while (i >= 0){
i /= 2
sum += i*i*i
}
I am really confused can anyone help me out and explain
If you're unsure you can always use "time" module to roughly get an idea of the complexity. It would go something like this.
import time
start = time.time() # put this before the loop
end = time.time() #put this after the loop
print(end - start) #this gives you evaluation time of your loop
Find evaluation times for different n's and determine the complexity.
Just by looking at it though, your loop gets executed roughly log2(n) times, and inside you have 2 multiplications and one division (so nothing complex). Therefore, I would assume O(log(n)) is a reasonable guess.
As mentioned in the comments, I'm assuming that the code was meant to be written as
i = n, sum = 0
while (i > 0) { // <--- Change >= to >
i /= 2
sum += i*i*i
}
since otherwise the code would be an infinite loop. With this in mind, let's take a look at what this code is doing.
For starters, note that the sum variable isn't doing anything that impacts our time complexity. On each iteration, it gets bigger, but we're doing only O(1) work to update it. That means that the time complexity here is going to depend on how many times the loop runs. Notice that, across the different iterations of the loop, the value of i will take on the sequence
n, n / 2, n / 4, n / 8, n / 16, n / 32, ...
and, in particular, on the kth iteration of the loop the value of i will be equal to n / 2k (ignoring rounding down, which we can safely do here). The question, then, is at what iteration of the loop we end up with n / 2k < 1, which is when the loop will stop. Solving, we get that
n / 2k < 1
n < 2k
log2 n < k
So this loop will stop as soon as the number of loop iterations k is greater than log2 n. This means that we do Θ(log n) loop iterations, of which each iteration does O(1) work, so the total work done is Θ(log n).

What are the number of operations in this method?

I am currently learning about asymptotic analysis, however I am unsure of how many operations are in these nested loops. Would somebody be able to help me understand how to approach them? Also what would the Big-O notation be? (This is also my first time on stack overflow so please forgive any formatting errors in the code).
public static void primeFactors(int n){
while( n % 2 == 0){
System.out.print(2 + " ");
n /= 2;
}
for(int i = 3; i <= Math.sqrt(n); i += 2){
while(n % i == 0){
System.out.print(i + " ");
n /= i;
}
}
}
In the worst case, the first loop (while) is O(log(n)). In the second loop, the outer loop runs in O(sqrt(n)) and the inner loop runs in O(log_i(n)). Hence, the time complexity of the second loop (inner and outer in total) is:
O(sum_{i = 3}^{sqrt(n)} log_i(n))
Therefore, the time complexity of the mentioned algorithm is O(sqrt(n) log(n)).
Notice that, if you mean n is modified inside the inner loop, and it affects on sqrt(n) in the outer loop, so the complexity of the second loop is O(sqrt(n)). Therefore, under this assumtion, the time complexity of the alfgorithm will be O(sqrt(n)) + O(log(n)) == O(sqrt(n)).
First, we see that the first loop is really a special case of the inner loop that occurs in the other loop, with i equal to two. It was separated as a special case in order to be able to increase i with steps of 2 instead of 1. But from the point of view of asymptotic complexity the step by 2 makes no difference: it represents a constant coefficient, which we can ignore. And so for our analysis we can just rewrite the code to this:
public static void primeFactors(int n){
for(int i = 2; i <= Math.sqrt(n); i += 1){ // note the change in start and increment value
while(n % i == 0){
System.out.print(i + " ");
n /= i;
}
}
}
The number of times that n/i is executed, corresponds to the number of non-distinct prime divisors that a number has. According to this Q&A that number of times is O(loglogn). It is not straightforward to derive this, so I had to look it up.
We should also consider the number of times the for loop iterates. The Math.sqrt(n) boundary for i can lower as the for loop iterates. The more divisions take place, the (much) fewer iterations the for loop has to make.
We can see that at the time that the loop exits, i has surpassed the square root of the greatest prime divisor of n. In the worst case that greatest prime divisor is n itself (when n is prime). So the for loop can iterate up to the square root of n, so O(√n) times. In that case the inner loop never iterates (no divisions).
We should thus see which is more determining, and we get O(√n + loglogn). This is O(√n).
The first loop divides n by 2 until it is not divisible by 2 anymore. The maximum number of time this can happen is log2(n).
The second loop, at first sight, seems to run sqrt(n) times the inner loop which is also O(log(n)), but that is actually not the case. Everytime the while condition of the second loop is satisfied, n is drastically decreased, and since the condition of a for-loop is executed on each iteration, sqrt(n) also decreases. The worst case actually happens if the condition of while loop is never satisfied, i.e. if n is prime.
Hence the overall time complexity is O(sqrt(n)).

time complexity of three codes where variables depend on each other

1) i=s=1;
while(s<=n)
{
i++;
s=s+i;
}
2) for(int i=1;i<=n;i++)
for(int j=1;j<=n;j+=i)
cout<<"*";
3) j=1;
for(int i=1;i<=n;i++)
for(j=j*i;j<=n;j=j+i)
cout<<"*";
can someone explain me the time complexity of these three codes?
I know the answers but I can't understand how it came
1) To figure this out, we need to figure out how large s is on the x'th iteration of the loop. Then we'll know how many iterations occur until the condition s > n is reached.
On the x'th iteration, the variable i has value x + 1
And the variable s has value equal to the sum of i for all previous values. So, on that iteration, s has value equal to
sum_{y = 1 .. x} (y+1) = O(x^2)
This means that we have s = n on the x = O(\sqrt{n}) iteration. So that's the running time of the loop.
If you aren't sure about why the sum is O(x^2), I gave an answer to another question like this once here and the same technique applies. In this particular case you could also use an identity
sum_{y = 1 .. x} y = y choose 2 = (y+1)(y) / 2
This identity can be easily proved by induction on y.
2) Try to analyze how long the inner loop runs, as a function of i and n. Since we start at one, end at n, and count up by i, it runs n/i times. So the total time for the outer loop is
sum_{i = 1 .. n} n/i = n * sum_{i = 1 .. n} 1 / i = O(n log n)
The series sum_{i = 1 .. n} 1 / i is called the harmonic series. It is well-known that it converges to O(log n). I can't enclose here a simple proof. It can be proved using calculus though. This is a series you just have to know. If you want to see a simple proof, you can look on on wikipedia at the "comparison test". The proof there only shows the series is >= log n, but the same technique can be used to show it is <= O(log n) also.
3.) This looks like kind of a trick question. The inner loop is going to run once, but once it exits with j = n + 1, we can never reenter this loop, because no later line that runs will make j <= n again. We will run j = j * i many times, where i is a positive number. So j is going to end up at least as large as n!. For any significant value of n, this is going to cause an overflow. Ignoring that possibility, the code is going to perform O(n) operations in total.

Theta Notation and Worst Case Running time nested loops

This is the code I need to analyse:
i = 1
while i < n
do
j = 0;
while j <= i
do
j = j + 1
i = 2i
So, the first loop should run log(2,n) and the innermost loop should run log(2,n) * (i + 1), but I'm pretty sure that's wrong.
How do I use a theta notation to prove it?
An intuitive way to think about this is to see how much work your inner loop is doing for a fixed value of outer loop variable i. It's clearly as much as i itself. Thus, if the value of i is 256, then then you will do j = j + 1 that many times.
Thus, total work done is the sum of the values that i takes in the outer loop's execution. That variable is increasing much rapidly to catch up with n. Its values, as given by i = 2i (it should be i = 2*i), are going to be like: 2, 4, 8, 16, ..., because we start with 2 iterations of the inner loop when i = 1. This is a geometric series: a, ar, ar^2 ... with a = 1 and r = 2. The last term, as you figured out will be n and there will be log2 n terms in the series. And that is simple summation of a geometric series.
It doesn't make much sense to have a worst case or a best case for this algorithm because there are no different permutations of the input which is just a number n in this case. Best case or worst case are relevant when a particular input (e.g. a particular sequence of numbers) affects the running time of the algorithm.
The running time then is the sum of geometric series (a.(r^num_terms - 1)/(r-1)):
T(n) = 2 + 4 + ... 2^(log2 n)
= 2 . (2^log2 n - 1)
= 2 . (n - 1)
⩽ 3n = O(n)
Thus, you can't be doing work that is more than some constant multiple of n. Hence, the running time of this algorithm is O(n).
You can't be doing some work that is less than some (other) constant multiple of n, since you have to go through the increment in inner loop as shown above. Thus, the running time of this algorithm is also ≥ c.n i.e. it is Ω(n).
Together, this means that running time of this algorithm is Θ(n).
You can't use i in your final expression; only n.
You can easily see that the inner loop executes i times each time it is reached. And it sounds like you've figured out the different values that i can have. So add up those values, and you have the total amount of work.

Analysis of algorithm by Average-case

I'm trying to solve a very simple algorithm analysis (apparently isn't so simple to me).
The algorithm is going like this:
int findIndexOfN(int A[], int n) {
// this algorithm looks for the value n in array with size of n.
// returns the index of n in case found, otherwise returns -1.
// it is possible that n doesn't appear in the array.
// n appears at most one time.
// the probability that n doesn't appear in the array is $1/(n+1)$
// for each cell in the array, the probability that n is found in index i
// is $1/(n+1)$
int index, fIndex;
index = 0;
fIndex = -1;
while (index < n && fIndex == -1) {
if(A[index] == n) {
fIndex = index;
}
index++;
}
return fIndex;
}
Now I'm trying to calculate the average running time. I think this is Geometric series but I can't find out a way to merge between the terms probability and complexity.
For example, I know that in case the value n is found in index 1, then it would take 1 loop step to get the second index (1) and find n.
The probabilty on the other hand gives me some fractions....
Here is what I got so far:
$\sigma from i=1 to n evaluate ( (1/n) * ((n-1)/n)^i-1 )
But again, I can't find out the connection of this formula to T(n) and also I can't find a relation of BigOh, BigOmega or Theta for this function.
This algorithm is BigOh(n), BigOmega(n) and Theta(n).
To know this you don't need to compute probabilities or use the Master Theorem (as your function isn't recursive). You just need to see that the function is like a loop over n terms. Maybe it would be easier if you represented your function like this:
for (int i = 0; i < n; ++i) {
if (A[i] == n)
return i;
}
I know this seems counterintuitive, because if n is the first element of your array, indeed you only need one operation to find it. What is important here is the general case, where n is somewhere in the middle of your array.
Let's put it like this: given the probabilities you wrote, there is 50% chances that n is between the elements n/4 and 3n/4 of your array. In this case, you need between n/4 and 3n/4 tests to find your element, which evaluates to O(n) (you drop the constant when you do BogOh analysis).
If you want to know the average number of operations you will need, you can compute a series, like you wrote in the question. The actual series giving you the average number of operations is
1/(n+1) + 2/(n+1) + 3/(n+1) ... + n/(n+1)
Why? Because you need one test if n is in the first position (with probability 1/(n+1)), two tests if n is in the second position (with probability 1/(n+1)), ... i tests if n is in the ith position (with probability 1/(n+1))
This series evaluates to
n(n+1)/2 * 1/(n+1) = n/2

Resources