Related
Imagine we have a simple 2D drawing, filled it with lots of non-overlapping circles and only a few stars.
If we are to find all the stars among all these circles, I can think of very few methods. Brute force is one of them. Another one is possibly reduce the image size (to the optimal point where you can still distinguish the objects apart) and then apply brute force and map to the original image. The drawback of brute force is of course, it is very time consuming. I am looking for faster methods, possibly the fastest one.
What is the fastest image processing method to search for the specified item on a simple 2D image?
One typical way of looking for an object in an image is through cross correlation. Basically, you look for the position where the cross-correlation between a mask (the object you're attempting to find) and the image is the highest. That position is the likely location of the object you're trying to find.
For the sake of simplicity, I will refer to the object you're attempting to find as a star, but in general it can be any shape.
Some problems with the above approach:
The size of the mask has to match the size of the star. If you don't know the size of the star, then you will have to try different size masks. Image pyramids are more effective than just iteratively trying different size masks, but still require extra effort.
Similarly, the orientations of the mask and the star have to match. If they don't, the cross-correlation won't work.
For these reasons, the more you know about your problem, the simpler it becomes. This is the reason why people have asked you for more information in the comments. A general purpose solution doesn't really exist, to the best of my knowledge. Maybe someone more knowledgeable can correct me on this.
As you've mentioned, reducing the size of the image will help you reduce the computational time of your approach. In my opinion, it's hardly the core element of a solution -- it's just an optional optimization step.
If the shapes are easy to segment from the background, you might be able to compute distinguishing shape/color descriptors. Depending on your problem you could choose descriptors that are invariant to scale, translation or rotation (e.g. compactness, if it is unique to each shape). I do not know if this will be faster, though.
If you already know the exact shape and have an idea about the size, you might want to have a look at the Generalized Hough Transform, which is basically a formalized description of your "brute force algorithm"
As you list a property that the shapes are not overlapping then I assume an efficient algorithm would be able to
cut out all the shapes by scanning the image in some way (I can imagine relatively efficient and simple algorithm for convex shapes)
when you are left with cut out shapes you could use cross relation misha mentioned
You should describe the problem a bit better
can the shapes be rotated or scaled (or some other transform?)
is the background uniform colour
are the shapes uniform colour
are the shapes filled
Depending on the answer on the above questions you might have more less or more simple solutions.
Also, maybe this article might be interesting.
If the shapes are very regular maybe turning them into vectors could fit your needs nicely, but it might be an overkill, really depends what you want to do later.
Step 1: Thresholding - reduce the image to 1 bit (black or white) if the general image set permits it. [For the type of example you cite, my guess is thresholding would work nicely - leaving enough details to find objects].
Step 2: Optionally do some smoothing/noise removal.
Step 3: Use some clustering approach to gather the foreground objects.
Step 4: Use an appropriate heuristic to identify the objects.
The parameters in steps 1/2 will depend a lot on the type of images as well as experimentation/observation. 3 is usually straightforward if you have worked out 1/2 correctly. 4 will depend very much on the problem (for example, in your case identifying stars - which would depend on what is the actual shape of the stars expected in the images).
I want to implement the two above mentioned image resampling algorithms (bicubic and Lanczos) in C++. I know that there are dozens of existing implementations out there, but I still want to make my own. I want to make it partly because I want to understand how they work, and partly because I want to give them some capabilities not found in mainstream implementations (like configurable multi-CPU support and progress reporting).
I tried reading Wikipedia, but the stuff is a bit too dry for me. Perhaps there are some nicer explanations of these algorithms? I couldn't find anything either on SO or Google.
Added: Seems like nobody can give me a good link about these topics. Can anyone at least try to explain them here?
The basic operation principle of both algorithms is pretty simple. They're both convolution filters. A convolution filter that for each output value moves the convolution functions point of origin to be centered on the output and then multiplies all the values in the input with the value of the convolution function at that location and adds them together.
One property of convolution is that the integral of the output is the product of the integrals of the two input functions. If you consider the input and output images, then the integral means average brightness and if you want the brightness to remain the same the integral of the convolution function needs to add up to one.
One way how to understand them is to think of the convolution function as something that shows how much input pixels influence the output pixel depending on their distance.
Convolution functions are usually defined so that they are zero when the distance is larger than some value so that you don't have to consider every input value for every output value.
For lanczos interpolation the convolution function is based on the sinc(x) = sin(x*pi)/x function, but only the first few lobes are taken. Usually 3:
lanczos(x) = {
0 if abs(x) > 3,
1 if x == 0,
else sin(x*pi)/x
}
This function is called the filter kernel.
To resample with lanczos imagine you overlay the output and input over eachother, with points signifying where the pixel locations are. For each output pixel location you take a box +- 3 output pixels from that point. For every input pixel that lies in that box, calculate the value of the lanczos function at that location with the distance from the output location in output pixel coordinates as the parameter. You then need to normalize the calculated values by scaling them so that they add up to 1. After that multiply each input pixel value with the corresponding scaling value and add the results together to get the value of the output pixel.
Because lanzos function has the separability property and, if you are resizing, the grid is regular, you can optimize this by doing the convolution horizontally and vertically separately and precalculate the vertical filters for each row and horizontal filters for each column.
Bicubic convolution is basically the same, with a different filter kernel function.
To get more detail, there's a pretty good and thorough explanation in the book Digital Image Processing, section 16.3.
Also, image_operations.cc and convolver.cc in skia have a pretty well commented implementation of lanczos interpolation.
While what Ants Aasma says roughly describes the difference, I don't think it is particularly informative as to why you might do such a thing.
As far as links go, you are asking a very basic question in image processing, and any decent introductory textbook on the subject will describe this. If I remember correctly, Gonzales and Woods is decent on it, but I'm away from my books and can't check.
Now on to the particulars, it should help to think about what you are doing fundamentally. You have a square lattice of measurements that you want to interpolate new values for. In the simple case of upsampling, lets imagine you want a new measurement in between every one that you already have (e.g. double the resolution).
Now you won't get the "correct" value, because in general you don't have that information. So you have to estimate it. How to do this? A very simple way would be to linearly interpolate. Everyone knows how to do this with two points, you just draw a line between them, and read the new value off the line (in this case, at the half way point).
Now an image is two dimensional, so you really want to do this in both the left-right and up-down directions. Use the result for your estimate and voila you have "bilinear" interpolation.
The main problem with this is that it isn't very accurate, although it's better (and slower) than the "nearest neighbor" approach which is also very local and fast.
To address the first problem, you want something better than a linear fit of two points, you want to fit something to more data points (pixels), and something that can be nonlinear. A good trade off on accuracy and computational cost is something called a cubic spline. So this will give you a smooth fit line, and again you approximate your new "measurement" by the value it takes in the middle. Do this in both directions and you've got "bicubic" interpolation.
So that's more accurate, but still heavy. One way to address the speed issue is to use a convolution, which has the nice property that in the Fourier domain, it's just a multiplication, so we can implement it quite quickly. But you don't need to worry about the implementation to understand that the convolution result at any point is one function (your image) being integrated in product another, typically much smaller support (the part that is non-zero) function called the kernel), after that kernel has been centered over that particular point. In the discrete world, these are just sums of the products.
It turns out that you can design a convolution kernel that has properties quite like the cubic spline, and use that to get a fast "bicubic"
Lancsoz resampling is a similar thing, with slightly different properties in the kernel, which primarily means they will have different characteristic artifacts. You can look up the details of these kernel functions easily enough (I'm sure wikipedia has them, or any intro text). The implementations used in graphics programs tend to be highly optimized and sometimes have specialized assumptions which make them more efficient but less general.
I would like suggest the following article for a basic understanding of different image interpolation methods image interpolation via convolution. If you want to try more interpolation methods, the imageresampler is a nice open source project to begin with.
In my opinion image interpolation can be understood from two aspects, one is from function fitting perspective, and one is from convolution perspective. For example, the spline interpolation explained in image interpolation via convolution is well explained from function fitting perspective in Cubic interpolation.
Additionally, image interpolation is always related to a specific application, for example image zooming, image rotation and so on. In fact for a specific application, image interpolation can be implemented i.n a smart way. For example, image rotation can be implemented via a three-shearing method, and during each shearing operation different one-dimension interpolation algorithms can be implemented.
I'm sure many people have already seen demos of using genetic algorithms to generate an image that matches a sample image. You start off with noise, and gradually it comes to resemble the target image more and more closely, until you have a more-or-less exact duplicate.
All of the examples I've seen, however, use a fairly straightforward pixel-by-pixel comparison, resulting in a fairly predictable 'fade in' of the final image. What I'm looking for is something more novel: A fitness measure that comes closer to what we see as 'similar' than the naive approach.
I don't have a specific result in mind - I'm just looking for something more 'interesting' than the default. Suggestions?
I assume you're talking about something like Roger Alsing's program.
I implemented a version of this, so I'm also interested in alternative fitness functions, though I'm coming at it from the perspective of improving performance rather than aesthetics. I expect there will always be some element of "fade-in" due to the nature of the evolutionary process (though tweaking the evolutionary operators may affect how this looks).
A pixel-by-pixel comparison can be expensive for anything but small images. For example, the 200x200 pixel image I use has 40,000 pixels. With three values per pixel (R, G and B), that's 120,000 values that have to be incorporated into the fitness calculation for a single image. In my implementation I scale the image down before doing the comparison so that there are fewer pixels. The trade-off is slightly reduced accuracy of the evolved image.
In investigating alternative fitness functions I came across some suggestions to use the YUV colour space instead of RGB since this is more closely aligned with human perception.
Another idea that I had was to compare only a randomly selected sample of pixels. I'm not sure how well this would work without trying it. Since the pixels compared would be different for each evaluation it would have the effect of maintaining diversity within the population.
Beyond that, you are in the realms of computer vision. I expect that these techniques, which rely on feature extraction, would be more expensive per image, but they may be faster overall if they result in fewer generations being required to achieve an acceptable result. You might want to investigate the PerceptualDiff library. Also, this page shows some Java code that can be used to compare images for similarity based on features rather than pixels.
A fitness measure that comes closer to what we see as 'similar' than the naive approach.
Implementing such a measure in software is definitely nontrivial. Google 'Human vision model', 'perceptual error metric' for some starting points. You can sidestep the issue - just present the candidate images to a human for selecting the best ones, although it might be a bit boring for the human.
I haven't seen such a demo (perhaps you could link one). But a couple proto-ideas from your desription that may trigger an interesting one:
Three different algorithms running in parallel, perhaps RGB or HSV.
Move, rotate, or otherwise change the target image slightly during the run.
Fitness based on contrast/value differences between pixels, but without knowing the actual colour.
...then "prime" a single pixel with the correct colour?
I would agree with other contributors that this is non-trivial. I'd also add that it would be very valuable commercially - for example, companies who wish to protect their visual IP would be extremely happy to be able to trawl the internet looking for similar images to their logos.
My naïve approach to this would be to train a pattern recognizer on a number of images, each generated from the target image with one or more transforms applied to it: e.g. rotated a few degrees either way; a translation a few pixels either way; different scales of the same image; various blurs and effects (convolution masks are good here). I would also add some randomness noise to the each of the images. The more samples the better.
The training can all be done off-line, so shouldn't cause a problem with runtime performance.
Once you've got a pattern recognizer trained, you can point it at the the GA population images, and get some scalar score out of the recognizers.
Personally, I like Radial Basis Networks. Quick to train. I'd start with far too many inputs, and whittle them down with principle component analysis (IIRC). The outputs could just be a similiarity measure and dissimilarity measure.
One last thing; whatever approach you go for - could you blog about it, publish the demo, whatever; let us know how you got on.
I have two lists containing x-y coordinates (of stars). I could also have magnitudes (brightnesses) attached to each star. Now each star has random position jiggles and there can be a few extra or missing points in each image. My question is, "What is the best 2D point matching algorithm for such a dataset?" I guess both for a simple linear (translation, rotation, scale) and non-linear (say, n-degree polynomials in the coordinates). In the lingo of the point matching field, I'm looking for the algorithms that would win in a shootout between 2D point matching programs with noise and spurious points. There may be a different "winners" depending if the labeling info is used (the magnitudes) and/or the transformation is restricted to being linear.
I am aware that there are many classes of 2D point matching algorithms and many algorithms in each class (literally probably hundreds in total) but I don't know which, if any, is the consider the "best" or the "most standard" by people in the field of computer vision. Sadly, many of the articles to papers I want to read don't have online versions and I can only read the abstract. Before I settle on a particular algorithm to implement it would be good to hear from a few experts to separate the wheat from the chaff.
I have a working matching program that uses triangles but it fails somewhat frequently (~5% of the time) such that the solution transformation has obvious distortions but for no obvious reason. This program was not written by me and is from a paper written almost 20 years ago. I want to write a new implementation that performs most robustly. I am assuming (hoping) that there have been some advances in this area that make this plausible.
If you're interested in star matching, check out the Astrometry.net blind astrometry solver and the paper on it here. They use four point quads to solve star configurations in Flickr pictures of the night sky. Check out this interview.
There is no single "best" algorithm for this. There are lots of different techniques, and each work better than others on specific datasets and types of data.
One thing I'd recommend is to read this introduction to image registration from the tutorials of the Insight Toolkit. ITK supports MANY types of image registration (which is what it sounds like you are attempting), and is very robust in many cases. Most of their users are in the medical field, so you'll have to wade through a lot of medical jargon, but the algorithms and code work with any type of image (including 1,2,3, and n dimensional images, of different types,etc).
You can consider applying your algorithm first only on the N brightest stars, then include progressively the others to refine the result, reducing the search range at the same time.
Using RANSAC for robustness to extra points is also very common.
I'm not sure it would work, but worth a try:
For each star do the circle time ray Fourier transform - centered around it - of all the other stars (note: this is not the standard Fourier transform, which is line times line).
The phase space of circle times ray is integers times line, but since we only have finite accuracy, you just get a matrix; the dimensions of the matrix depend on accuracy. Now try to pair the matrices to one another (e.g. using L_2 norm)
I saw a program on tv a while ago about how researchers were taking pictures of whales and using the spots on them (which are unique for each whale) to id each whale. It used the angles between the spots. By using the angles it didn't matter if the image was rotated or scaled or translated. That sounds similar to what you're doing with your triangles.
I think the "best" (most technical) way would to be to take the Fourier Transform of the original image and of the new linearly modified image. By doing some simple filtering, it should be easy to figure out the orientation and scale of your image with respect to the old one. There is a description of the 2d Fourier Transform here.
Given two different image files (in whatever format I choose), I need to write a program to predict the chance if one being the illegal copy of another. The author of the copy may do stuff like rotating, making negative, or adding trivial details (as well as changing the dimension of the image).
Do you know any algorithm to do this kind of job?
These are simply ideas I've had thinking about the problem, never tried it but I like thinking about problems like this!
Before you begin
Consider normalising the pictures, if one is a higher resolution than the other, consider the option that one of them is a compressed version of the other, therefore scaling the resolution down might provide more accurate results.
Consider scanning various prospective areas of the image that could represent zoomed portions of the image and various positions and rotations. It starts getting tricky if one of the images are a skewed version of another, these are the sort of limitations you should identify and compromise on.
Matlab is an excellent tool for testing and evaluating images.
Testing the algorithms
You should test (at the minimum) a large human analysed set of test data where matches are known beforehand. If for example in your test data you have 1,000 images where 5% of them match, you now have a reasonably reliable benchmark. An algorithm that finds 10% positives is not as good as one that finds 4% of positives in our test data. However, one algorithm may find all the matches, but also have a large 20% false positive rate, so there are several ways to rate your algorithms.
The test data should attempt to be designed to cover as many types of dynamics as possible that you would expect to find in the real world.
It is important to note that each algorithm to be useful must perform better than random guessing, otherwise it is useless to us!
You can then apply your software into the real world in a controlled way and start to analyse the results it produces. This is the sort of software project which can go on for infinitum, there are always tweaks and improvements you can make, it is important to bear that in mind when designing it as it is easy to fall into the trap of the never ending project.
Colour Buckets
With two pictures, scan each pixel and count the colours. For example you might have the 'buckets':
white
red
blue
green
black
(Obviously you would have a higher resolution of counters). Every time you find a 'red' pixel, you increment the red counter. Each bucket can be representative of spectrum of colours, the higher resolution the more accurate but you should experiment with an acceptable difference rate.
Once you have your totals, compare it to the totals for a second image. You might find that each image has a fairly unique footprint, enough to identify matches.
Edge detection
How about using Edge Detection.
(source: wikimedia.org)
With two similar pictures edge detection should provide you with a usable and fairly reliable unique footprint.
Take both pictures, and apply edge detection. Maybe measure the average thickness of the edges and then calculate the probability the image could be scaled, and rescale if necessary. Below is an example of an applied Gabor Filter (a type of edge detection) in various rotations.
Compare the pictures pixel for pixel, count the matches and the non matches. If they are within a certain threshold of error, you have a match. Otherwise, you could try reducing the resolution up to a certain point and see if the probability of a match improves.
Regions of Interest
Some images may have distinctive segments/regions of interest. These regions probably contrast highly with the rest of the image, and are a good item to search for in your other images to find matches. Take this image for example:
(source: meetthegimp.org)
The construction worker in blue is a region of interest and can be used as a search object. There are probably several ways you could extract properties/data from this region of interest and use them to search your data set.
If you have more than 2 regions of interest, you can measure the distances between them. Take this simplified example:
(source: per2000.eu)
We have 3 clear regions of interest. The distance between region 1 and 2 may be 200 pixels, between 1 and 3 400 pixels, and 2 and 3 200 pixels.
Search other images for similar regions of interest, normalise the distance values and see if you have potential matches. This technique could work well for rotated and scaled images. The more regions of interest you have, the probability of a match increases as each distance measurement matches.
It is important to think about the context of your data set. If for example your data set is modern art, then regions of interest would work quite well, as regions of interest were probably designed to be a fundamental part of the final image. If however you are dealing with images of construction sites, regions of interest may be interpreted by the illegal copier as ugly and may be cropped/edited out liberally. Keep in mind common features of your dataset, and attempt to exploit that knowledge.
Morphing
Morphing two images is the process of turning one image into the other through a set of steps:
Note, this is different to fading one image into another!
There are many software packages that can morph images. It's traditionaly used as a transitional effect, two images don't morph into something halfway usually, one extreme morphs into the other extreme as the final result.
Why could this be useful? Dependant on the morphing algorithm you use, there may be a relationship between similarity of images, and some parameters of the morphing algorithm.
In a grossly over simplified example, one algorithm might execute faster when there are less changes to be made. We then know there is a higher probability that these two images share properties with each other.
This technique could work well for rotated, distorted, skewed, zoomed, all types of copied images. Again this is just an idea I have had, it's not based on any researched academia as far as I am aware (I haven't look hard though), so it may be a lot of work for you with limited/no results.
Zipping
Ow's answer in this question is excellent, I remember reading about these sort of techniques studying AI. It is quite effective at comparing corpus lexicons.
One interesting optimisation when comparing corpuses is that you can remove words considered to be too common, for example 'The', 'A', 'And' etc. These words dilute our result, we want to work out how different the two corpus are so these can be removed before processing. Perhaps there are similar common signals in images that could be stripped before compression? It might be worth looking into.
Compression ratio is a very quick and reasonably effective way of determining how similar two sets of data are. Reading up about how compression works will give you a good idea why this could be so effective. For a fast to release algorithm this would probably be a good starting point.
Transparency
Again I am unsure how transparency data is stored for certain image types, gif png etc, but this will be extractable and would serve as an effective simplified cut out to compare with your data sets transparency.
Inverting Signals
An image is just a signal. If you play a noise from a speaker, and you play the opposite noise in another speaker in perfect sync at the exact same volume, they cancel each other out.
(source: themotorreport.com.au)
Invert on of the images, and add it onto your other image. Scale it/loop positions repetitively until you find a resulting image where enough of the pixels are white (or black? I'll refer to it as a neutral canvas) to provide you with a positive match, or partial match.
However, consider two images that are equal, except one of them has a brighten effect applied to it:
(source: mcburrz.com)
Inverting one of them, then adding it to the other will not result in a neutral canvas which is what we are aiming for. However, when comparing the pixels from both original images, we can definatly see a clear relationship between the two.
I haven't studied colour for some years now, and am unsure if the colour spectrum is on a linear scale, but if you determined the average factor of colour difference between both pictures, you can use this value to normalise the data before processing with this technique.
Tree Data structures
At first these don't seem to fit for the problem, but I think they could work.
You could think about extracting certain properties of an image (for example colour bins) and generate a huffman tree or similar data structure. You might be able to compare two trees for similarity. This wouldn't work well for photographic data for example with a large spectrum of colour, but cartoons or other reduced colour set images this might work.
This probably wouldn't work, but it's an idea. The trie datastructure is great at storing lexicons, for example a dictionarty. It's a prefix tree. Perhaps it's possible to build an image equivalent of a lexicon, (again I can only think of colours) to construct a trie. If you reduced say a 300x300 image into 5x5 squares, then decompose each 5x5 square into a sequence of colours you could construct a trie from the resulting data. If a 2x2 square contains:
FFFFFF|000000|FDFD44|FFFFFF
We have a fairly unique trie code that extends 24 levels, increasing/decreasing the levels (IE reducing/increasing the size of our sub square) may yield more accurate results.
Comparing trie trees should be reasonably easy, and could possible provide effective results.
More ideas
I stumbled accross an interesting paper breif about classification of satellite imagery, it outlines:
Texture measures considered are: cooccurrence matrices, gray-level differences, texture-tone analysis, features derived from the Fourier spectrum, and Gabor filters. Some Fourier features and some Gabor filters were found to be good choices, in particular when a single frequency band was used for classification.
It may be worth investigating those measurements in more detail, although some of them may not be relevant to your data set.
Other things to consider
There are probably a lot of papers on this sort of thing, so reading some of them should help although they can be very technical. It is an extremely difficult area in computing, with many fruitless hours of work spent by many people attempting to do similar things. Keeping it simple and building upon those ideas would be the best way to go. It should be a reasonably difficult challenge to create an algorithm with a better than random match rate, and to start improving on that really does start to get quite hard to achieve.
Each method would probably need to be tested and tweaked thoroughly, if you have any information about the type of picture you will be checking as well, this would be useful. For example advertisements, many of them would have text in them, so doing text recognition would be an easy and probably very reliable way of finding matches especially when combined with other solutions. As mentioned earlier, attempt to exploit common properties of your data set.
Combining alternative measurements and techniques each that can have a weighted vote (dependant on their effectiveness) would be one way you could create a system that generates more accurate results.
If employing multiple algorithms, as mentioned at the begining of this answer, one may find all the positives but have a false positive rate of 20%, it would be of interest to study the properties/strengths/weaknesses of other algorithms as another algorithm may be effective in eliminating false positives returned from another.
Be careful to not fall into attempting to complete the never ending project, good luck!
Read the paper: Porikli, Fatih, Oncel Tuzel, and Peter Meer. “Covariance Tracking Using Model Update Based
on Means on Riemannian Manifolds”. (2006) IEEE Computer Vision and Pattern Recognition.
I was successfully able to detect overlapping regions in images captured from adjacent webcams using the technique presented in this paper. My covariance matrix was composed of Sobel, canny and SUSAN aspect/edge detection outputs, as well as the original greyscale pixels.
An idea:
use keypoint detectors to find scale- and transform- invariant descriptors of some points in the image (e.g. SIFT, SURF, GLOH, or LESH).
try to align keypoints with similar descriptors from both images (like in panorama stitching), allow for some image transforms if necessary (e.g. scale & rotate, or elastic stretching).
if many keypoints align well (exists such a transform, that keypoint alignment error is low; or transformation "energy" is low, etc.), you likely have similar images.
Step 2 is not trivial. In particular, you may need to use a smart algorithm to find the most similar keypoint on the other image. Point descriptors are usually very high-dimensional (like a hundred parameters), and there are many points to look through. kd-trees may be useful here, hash lookups don't work well.
Variants:
Detect edges or other features instead of points.
It is indeed much less simple than it seems :-) Nick's suggestion is a good one.
To get started, keep in mind that any worthwhile comparison method will essentially work by converting the images into a different form -- a form which makes it easier to pick similar features out. Usually, this stuff doesn't make for very light reading ...
One of the simplest examples I can think of is simply using the color space of each image. If two images have highly similar color distributions, then you can be reasonably sure that they show the same thing. At least, you can have enough certainty to flag it, or do more testing. Comparing images in color space will also resist things such as rotation, scaling, and some cropping. It won't, of course, resist heavy modification of the image or heavy recoloring (and even a simple hue shift will be somewhat tricky).
http://en.wikipedia.org/wiki/RGB_color_space
http://upvector.com/index.php?section=tutorials&subsection=tutorials/colorspace
Another example involves something called the Hough Transform. This transform essentially decomposes an image into a set of lines. You can then take some of the 'strongest' lines in each image and see if they line up. You can do some extra work to try and compensate for rotation and scaling too -- and in this case, since comparing a few lines is MUCH less computational work than doing the same to entire images -- it won't be so bad.
http://homepages.inf.ed.ac.uk/amos/hough.html
http://rkb.home.cern.ch/rkb/AN16pp/node122.html
http://en.wikipedia.org/wiki/Hough_transform
In the form described by you, the problem is tough. Do you consider copy, paste of part of the image into another larger image as a copy ? etc.
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you take a step-back, this is easier to solve if you watermark the master images.
You will need to use a watermarking scheme to embed a code into the image. To take a step back, as opposed to some of the low-level approaches (edge detection etc) suggested by some folks, a watermarking method is superior because:
It is resistant to Signal processing attacks
► Signal enhancement – sharpening, contrast, etc.
► Filtering – median, low pass, high pass, etc.
► Additive noise – Gaussian, uniform, etc.
► Lossy compression – JPEG, MPEG, etc.
It is resistant to Geometric attacks
► Affine transforms
► Data reduction – cropping, clipping, etc.
► Random local distortions
► Warping
Do some research on watermarking algorithms and you will be on the right path to solving your problem. (
Note: You can benchmark you method using the STIRMARK dataset. It is an accepted standard for this type of application.
This is just a suggestion, it might not work and I'm prepared to be called on this.
This will generate false positives, but hopefully not false negatives.
Resize both of the images so that they are the same size (I assume that the ratios of widths to lengths are the same in both images).
Compress a bitmap of both images with a lossless compression algorithm (e.g. gzip).
Find pairs of files that have similar file sizes. For instance, you could just sort every pair of files you have by how similar the file sizes are and retrieve the top X.
As I said, this will definitely generate false positives, but hopefully not false negatives. You can implement this in five minutes, whereas the Porikil et. al. would probably require extensive work.
I believe if you're willing to apply the approach to every possible orientation and to negative versions, a good start to image recognition (with good reliability) is to use eigenfaces: http://en.wikipedia.org/wiki/Eigenface
Another idea would be to transform both images into vectors of their components. A good way to do this is to create a vector that operates in x*y dimensions (x being the width of your image and y being the height), with the value for each dimension applying to the (x,y) pixel value. Then run a variant of K-Nearest Neighbours with two categories: match and no match. If it's sufficiently close to the original image it will fit in the match category, if not then it won't.
K Nearest Neighbours(KNN) can be found here, there are other good explanations of it on the web too: http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
The benefits of KNN is that the more variants you're comparing to the original image, the more accurate the algorithm becomes. The downside is you need a catalogue of images to train the system first.
If you're willing to consider a different approach altogether to detecting illegal copies of your images, you could consider watermarking. (from 1.4)
...inserts copyright information into the digital object without the loss of quality. Whenever the copyright of a digital object is in question, this information is extracted to identify the rightful owner. It is also possible to encode the identity of the original buyer along with the identity of the copyright holder, which allows tracing of any unauthorized copies.
While it's also a complex field, there are techniques that allow the watermark information to persist through gross image alteration: (from 1.9)
... any signal transform of reasonable strength cannot remove the watermark. Hence a pirate willing to remove the watermark will not succeed unless they debase the document too much to be of commercial interest.
of course, the faq calls implementing this approach: "...very challenging" but if you succeed with it, you get a high confidence of whether the image is a copy or not, rather than a percentage likelihood.
If you're running Linux I would suggest two tools:
align_image_stack from package hugin-tools - is a commandline program that can automatically correct rotation, scaling, and other distortions (it's mostly intended for compositing HDR photography, but works for video frames and other documents too). More information: http://hugin.sourceforge.net/docs/manual/Align_image_stack.html
compare from package imagemagick - a program that can find and count the amount of different pixels in two images. Here's a neat tutorial: http://www.imagemagick.org/Usage/compare/ uising the -fuzz N% you can increase the error tolerance. The higher the N the higher the error tolerance to still count two pixels as the same.
align_image_stack should correct any offset so the compare command will actually have a chance of detecting same pixels.