Maximize sum of integer entries under a weight constraint - sorting

I have an array of integers. Lets denote it by A. There is another array W containing weights associated with each entry of A.
In other words, associated with each entry A[i] is a certain weight entry W[i]. (Note that the weights are out of a limited set S_w = {w1,w2,w3,w4} so only few possible values)
The problem statement is as follows: Pick a random number of entries out of A such that when summed together, give you the highest value (SUM_A) under the constraint that the sum of their respective weights (SUM_W) doesn't exceed a threshold, W_threshold.
One possibility is brute force: Compute all permutations of A and for each permutation, select first n entries such that their sum weight SUM_W doesn't exceed W_threshold. Finally, the permutation that gives the maximum SUM_A shall be selected. But the complexity of this scheme is very high due to permutation computation step since the length of A is not constrained.
One other (sub-optimal) possibility is to sort A in descending order and then select first n entries such that their SUM_W doesn't exceed W_threshold. This has lower complexity but the result would be suboptimal.
Could someone give me tips if their already exists an algorithm to resolve the above stated problem? Or if anyone has ideas better than the ones I described above. Many thanks

Related

Toggling bits pairs in an array to maximize its dot product with another array

Suppose two arrays are given A and B. A consists of integers and the second one consists of 0 and 1.
Now an operation is given - You can choose any adjacent bits in array B and you can toggle these two bits (for example - 00->11, 01->10, 10->01, 11->00) and you can perform this operation any number of times.
The output should be the sum of A[0]*B[0]+A[1]*B[1]+....+A[N-1]*B[N-1] such that the sum is maximum.
During the interview, my approach to this problem was to get the maximum number of 1's in array B in order to maximize the sum.
So to do that, I first calculated the total number of 1's in O(n) time in B. Let count = No. Of 1's=x.
Then I started traversing the array and toggle only if count becomes greater than x or based on the elements of array A (for example: Let B[i]=0 and B[i+1]=1 & A[i]=51 and A[i+1]=50
So I will toggle B[i] B[i+1] because A[i]>A[i+1])
But the interviewer was not quite satisfied with my approach and was asking me further to develop a less time complex algorithm.
Can anyone suggest a better approach with lesser time complexity?
You can create any B-vector with an even number of flipped bits just by repeatedly flipping the first bit that is in the wrong state.
So, pick all the positive numbers in A, and then drop the smallest one if you ended up with an a count that has a different oddness than the number of 1s in B. If you can't do that, because B has an odd number of 1s and A is all negative, then just pick the negative number closest to 0.
Then turn on all the bits corresponding to the numbers you chose, and turn off the other ones.

Giving a set of tuples (value,cost),Is there an algorithm to find the combination of tuple that have the least cost for storing given number

I have a set of (value,cost) tuples which is (2000000,200) , (500000,75) , (100000,20)
Suppose X is any positive number.
Is there an algorithm to find the combination of tuple that have the least cost for the sum of value that can store X.
The sum of tuple values can be equal or greater than the given X
ex.
giving x = 800000 the answer should be (500000,75) , (100000,20) , (100000,20) , (100000,20)
giving x = 900000 the answer should be (500000,75) , (500000,75)
giving x = 1500000 the answer should be (2000000,200)
I can hardcode this but the set and the tuple are subject to change so if this can be substitute with well-known algorithm it would be great.
This can be solved with dinamic programming, as you have no limit on number of tuples and can afford higher sums that provided number.
First, you can optimize tuples. If one big tuple can be replaced by number of smaller ones with equal or lower cost and equal or higher value, you can remove bigger tuple at all.
Also, it's fruitful for future use to order tuples in optimized set by value/cost in descending order. Tuple is better if value/cost is bigger.
Time complexity O(N*T), where N is number divided by common factor (F) of optimized tuple values, and T is number of tuples in optimized tuple set.
Memory complexity O(N).
Set up array a of size N that will contain:
in a[i].cost best cost for solution for i*F, 0 for special case "no solution yet"
in a[i].tuple the tuple that led to best solution
Recursion scheme:
function gets n as a single parameter - it's provided number/F for start, leftover of needed value/F sums for recusion calls
if array a for n is filled, return a[n].cost
otherwise set current_cost to MAXINT
for each tuple from best to worst try to add it to solution:
if value/F >= n, we've got some solution, compare tuple cost to current_cost and if it's better, update a[n].cost and a[n].tuple
if value/F < n, call recursively for n-value/F and compare cost with current solution, update current solution and a[n].cost, a[n].tuple if needed
after all, return a[n].cost or throw exception is no solution exists
Tuple list can be retrieved from a but traverse through .tuple on each step.
It's possible to reduce overall array size down to max(tuple.value/F), but you'll have to save more or less complete solution instead of one best .tuple for each element, and you'll have to make "sliding window" carefully.
It's possible to turn recursion into cycle from 0 to n, as with many other dynamic programming algorithms.

What is the following known as?

I have a simple algorithmic problem.
I have a set of positive integers S and a positive maximum integer i.
Let's say the sum of S (or a subset of S) is the sum of its elements.
I need to find a subset s of S whose sum does not exceed i and is "maximally summing" - meaning no other subset of S has a greater sum than s without exceeding i.
The trivial solution I came up with is to go over each set of the power set of S and sum the integers, keeping track of the set with the properties I seek, but this algorithm is obviously exponential.
There must be a well-known name for this problem, as I don't think I am the first to come across this need. Could someone help me out?
Solve subset sum problem for your set using dynamic programming.
Then scan filled table from i-th entry to smaller values until you find non-zero entry (i.e. such sum exists). This is the largest sum of subsets that not exceeding given value.

Knapsack with mutually exclusive items

While standard knapsack problem can be solved by dynamic programming, I am trying to twist the problem a bit to clear my concept, however I found it maybe harder than I thought.
Original knapsack problem is that given a knapsack with size W, and a list of items which weight w[i] and has a value v[i], find the subset of items which can fit in the knapsack with highest total value.
To my understanding, this can be done by O(Wn) with dynamic programming, where n is the number of items.
Now if I try to add m constrains, each of them is a pair of items which can only be picked mutual exclusively (i.e. if there exist a constrain of item A and item B, then I can only take either one of them but not both)
Under such constrains, can this problem still be solved by dynamic programming in O(Wn)?
Assumption: Each element is included in atmost one constraint.
For the usual Knapsack problem, the optimal substructure that the problem exhibits is as follows:
For each item there can be two cases:
1. The item is included in the solution
2. The item not included in the solution.
Hence, the optimal solution for n items is given by max of following two values.
1. Maximum value obtained by n-1 items and W weight.
2. v_n + maximum value obtained by n-1 items and W-w_n weight.
Now if we add the constraint that either of nth or (n-1)th item can exist in the solution, then the optimal solution for n items is given by max of following three values.
1. Maximum value obtained by n-2 items and W weight.
2. v_n + maximum value obtained by n-2 items and W-w_n weight.
3. v_(n-1) + maximum value obtained by n-2 items and W-w_(n-1) weight.
So we treat each pair of elements in the constraint as a single element and execute the dynamic programming algorithm in O(Wn) time.

From an interview: Removing rows and columns in an n×n matrix to maximize the sum of remaining values

Given an n×n matrix of real numbers. You are allowed to erase any number (from 0 to n) of rows and any number (from 0 to n) of columns, and after that the sum of the remaining entries is computed. Come up with an algorithm which finds out which rows and columns to erase in order to maximize that sum.
The problem is NP-hard. (So you should not expect a polynomial-time algorithm for solving this problem. There could still be (non-polynomial time) algorithms that are slightly better than brute-force, though.) The idea behind the proof of NP-hardness is that if we could solve this problem, then we could solve the the clique problem in a general graph. (The maximum-clique problem is to find the largest set of pairwise connected vertices in a graph.)
Specifically, given any graph with n vertices, let's form the matrix A with entries a[i][j] as follows:
a[i][j] = 1 for i == j (the diagonal entries)
a[i][j] = 0 if the edge (i,j) is present in the graph (and i≠j)
a[i][j] = -n-1 if the edge (i,j) is not present in the graph.
Now suppose we solve the problem of removing some rows and columns (or equivalently, keeping some rows and columns) so that the sum of the entries in the matrix is maximized. Then the answer gives the maximum clique in the graph:
Claim: In any optimal solution, there is no row i and column j kept for which the edge (i,j) is not present in the graph. Proof: Since a[i][j] = -n-1 and the sum of all the positive entries is at most n, picking (i,j) would lead to a negative sum. (Note that deleting all rows and columns would give a better sum, of 0.)
Claim: In (some) optimal solution, the set of rows and columns kept is the same. This is because starting with any optimal solution, we can simply remove all rows i for which column i has not been kept, and vice-versa. Note that since the only positive entries are the diagonal ones, we do not decrease the sum (and by the previous claim, we do not increase it either).
All of which means that if the graph has a maximum clique of size k, then our matrix problem has a solution with sum k, and vice-versa. Therefore, if we could solve our initial problem in polynomial time, then the clique problem would also be solved in polynomial time. This proves that the initial problem is NP-hard. (Actually, it is easy to see that the decision version of the initial problem — is there a way of removing some rows and columns so that the sum is at least k — is in NP, so the (decision version of the) initial problem is actually NP-complete.)
Well the brute force method goes something like this:
For n rows there are 2n subsets.
For n columns there are 2n subsets.
For an n x n matrix there are 22n subsets.
0 elements is a valid subset but obviously if you have 0 rows or 0 columns the total is 0 so there are really 22n-2+1 subsets but that's no different.
So you can work out each combination by brute force as an O(an) algorithm. Fast. :)
It would be quicker to work out what the maximum possible value is and you do that by adding up all the positive numbers in the grid. If those numbers happen to form a valid sub-matrix (meaning you can create that set by removing rows and/or columns) then there's your answer.
Implicit in this is that if none of the numbers are negative then the complete matrix is, by definition, the answer.
Also, knowing what the highest possible maximum is possibly allows you to shortcut the brute force evaluation since if you get any combination equal to that maximum then that is your answer and you can stop checking.
Also if all the numbers are non-positive, the answer is the maximum value as you can reduce the matrix to a 1 x 1 matrix with that 1 value in it, by definition.
Here's an idea: construct 2n-1 n x m matrices where 1 <= m <= n. Process them one after the other. For each n x m matrix you can calculate:
The highest possible maximum sum (as per above); and
Whether no numbers are positive allowing you to shortcut the answer.
if (1) is below the currently calculate highest maximum sum then you can discard this n x m matrix. If (2) is true then you just need a simple comparison to the current highest maximum sum.
This is generally referred to as a pruning technique.
What's more you can start by saying that the highest number in the n x n matrix is the starting highest maximum sum since obviously it can be a 1 x 1 matrix.
I'm sure you could tweak this into a (slightly more) efficient recursive tree-based search algorithm with the above tests effectively allowing you to eliminate (hopefully many) unnecessary searches.
We can improve on Cletus's generalized brute-force solution by modelling this as a directed graph. The initial matrix is the start node of the graph; its leaves are all the matrices missing one row or column, and so forth. It's a graph rather than a tree, because the node for the matrix without both the first column and row will have two parents - the nodes with just the first column or row missing.
We can optimize our solution by turning the graph into a tree: There's never any point exploring a submatrix with a column or row deleted that comes before the one we deleted to get to the current node, as that submatrix will be arrived at anyway.
This is still a brute-force search, of course - but we've eliminated the duplicate cases where we remove the same rows in different orders.
Here's an example implementation in Python:
def maximize_sum(m):
frontier = [(m, 0, False)]
best = None
best_score = 0
while frontier:
current, startidx, cols_done = frontier.pop()
score = matrix_sum(current)
if score > best_score or not best:
best = current
best_score = score
w, h = matrix_size(current)
if not cols_done:
for x in range(startidx, w):
frontier.append((delete_column(current, x), x, False))
startidx = 0
for y in range(startidx, h):
frontier.append((delete_row(current, y), y, True))
return best_score, best
And here's the output on 280Z28's example matrix:
>>> m = ((1, 1, 3), (1, -89, 101), (1, 102, -99))
>>> maximize_sum(m)
(106, [(1, 3), (1, 101)])
Since nobody asked for an efficient algorithm, use brute force: generate every possible matrix that can be created by removing rows and/or columns from the original matrix, choose the best one. A slightly more efficent version, which most likely can be proved to still be correct, is to generate only those variants where the removed rows and columns contain at least one negative value.
To try it in a simple way:
We need the valid subset of the set of entries {A00, A01, A02, ..., A0n, A10, ...,Ann} which max. sum.
First compute all subsets (the power set).
A valid subset is a member of the power set that for each two contained entries Aij and A(i+x)(j+y), contains also the elements A(i+x)j and Ai(j+y) (which are the remaining corners of the rectangle spanned by Aij and A(i+x)(j+y)).
Aij ...
. .
. .
... A(i+x)(j+y)
By that you can eliminate the invalid ones from the power set and find the one with the biggest sum in the remaining.
I'm sure it can be improved by improving an algorithm for power set generation in order to generate only valid subsets and by that avoiding step 2 (adjusting the power set).
I think there are some angles of attack that might improve upon brute force.
memoization, since there are many distinct sequences of edits that will arrive at the same submatrix.
dynamic programming. Because the search space of matrices is highly redundant, my intuition is that there would be a DP formulation that can save a lot of repeated work
I think there's a heuristic approach, but I can't quite nail it down:
if there's one negative number, you can either take the matrix as it is, remove the column of the negative number, or remove its row; I don't think any other "moves" result in a higher sum. For two negative numbers, your options are: remove neither, remove one, remove the other, or remove both (where the act of removal is either by axing the row or the column).
Now suppose the matrix has only one positive number and the rest are all <=0. You clearly want to remove everything but the positive entry. For a matrix with only 2 positive entries and the rest <= 0, the options are: do nothing, whittle down to one, whittle down to the other, or whittle down to both (resulting in a 1x2, 2x1, or 2x2 matrix).
In general this last option falls apart (imagine a matrix with 50 positives & 50 negatives), but depending on your data (few negatives or few positives) it could provide a shortcut.
Create an n-by-1 vector RowSums, and an n-by-1 vector ColumnSums. Initialize them to the row and column sums of the original matrix. O(n²)
If any row or column has a negative sum, remove edit: the one with the minimum such and update the sums in the other direction to reflect their new values. O(n)
Stop when no row or column has a sum less than zero.
This is an iterative variation improving on another answer. It operates in O(n²) time, but fails for some cases mentioned in other answers, which is the complexity limit for this problem (there are n² entries in the matrix, and to even find the minimum you have to examine each cell once).
Edit: The following matrix has no negative rows or columns, but is also not maximized, and my algorithm doesn't catch it.
1 1 3 goal 1 3
1 -89 101 ===> 1 101
1 102 -99
The following matrix does have negative rows and columns, but my algorithm selects the wrong ones for removal.
-5 1 -5 goal 1
1 1 1 ===> 1
-10 2 -10 2
mine
===> 1 1 1
Compute the sum of each row and column. This can be done in O(m) (where m = n^2)
While there are rows or columns that sum to negative remove the row or column that has the lowest sum that is less than zero. Then recompute the sum of each row/column.
The general idea is that as long as there is a row or a column that sums to nevative, removing it will result in a greater overall value. You need to remove them one at a time and recompute because in removing that one row/column you are affecting the sums of the other rows/columns and they may or may not have negative sums any more.
This will produce an optimally maximum result. Runtime is O(mn) or O(n^3)
I cannot really produce an algorithm on top of my head, but to me it 'smells' like dynamic programming, if it serves as a start point.
Big Edit: I honestly don't think there's a way to assess a matrix and determine it is maximized, unless it is completely positive.
Maybe it needs to branch, and fathom all elimination paths. You never no when a costly elimination will enable a number of better eliminations later. We can short circuit if it's found the theoretical maximum, but other than any algorithm would have to be able to step forward and back. I've adapted my original solution to achieve this behaviour with recursion.
Double Secret Edit: It would also make great strides to reduce to complexity if each iteration didn't need to find all negative elements. Considering that they don't change much between calls, it makes more sense to just pass their positions to the next iteration.
Takes a matrix, the list of current negative elements in the matrix, and the theoretical maximum of the initial matrix. Returns the matrix's maximum sum and the list of moves required to get there. In my mind move list contains a list of moves denoting the row/column removed from the result of the previous operation.
Ie: r1,r1
Would translate
-1 1 0 1 1 1
-4 1 -4 5 7 1
1 2 4 ===>
5 7 1
Return if sum of matrix is the theoretical maximum
Find the positions of all negative elements unless an empty set was passed in.
Compute sum of matrix and store it along side an empty move list.
For negative each element:
Calculate the sum of that element's row and column.
clone the matrix and eliminate which ever collection has the minimum sum (row/column) from that clone, note that action as a move list.
clone the list of negative elements and remove any that are effected by the action taken in the previous step.
Recursively call this algorithm providing the cloned matrix, the updated negative element list and the theoretical maximum. Append the moves list returned to the move list for the action that produced the matrix passed to the recursive call.
If the returned value of the recursive call is greater than the stored sum, replace it and store the returned move list.
Return the stored sum and move list.
I'm not sure if it's better or worse than the brute force method, but it handles all the test cases now. Even those where the maximum contains negative values.
This is an optimization problem and can be solved approximately by an iterative algorithm based on simulated annealing:
Notation: C is number of columns.
For J iterations:
Look at each column and compute the absolute benefit of toggling it (turn it off if it's currently on or turn it on if it's currently off). That gives you C values, e.g. -3, 1, 4. A greedy deterministic solution would just pick the last action (toggle the last column to get a benefit of 4) because it locally improves the objective. But that might lock us into a local optimum. Instead, we probabilistically pick one of the three actions, with probabilities proportional to the benefits. To do this, transform them into a probability distribution by putting them through a Sigmoid function and normalizing. (Or use exp() instead of sigmoid()?) So for -3, 1, 4 you get 0.05, 0.73, 0.98 from the sigmoid and 0.03, 0.42, 0.56 after normalizing. Now pick the action according to the probability distribution, e.g. toggle the last column with probability 0.56, toggle the second column with probability 0.42, or toggle the first column with the tiny probability 0.03.
Do the same procedure for the rows, resulting in toggling one of the rows.
Iterate for J iterations until convergence.
We may also, in early iterations, make each of these probability distributions more uniform, so that we don't get locked into bad decisions early on. So we'd raise the unnormalized probabilities to a power 1/T, where T is high in early iterations and is slowly decreased until it approaches 0. For example, 0.05, 0.73, 0.98 from above, raised to 1/10 results in 0.74, 0.97, 1.0, which after normalization is 0.27, 0.36, 0.37 (so it's much more uniform than the original 0.05, 0.73, 0.98).
It's clearly NP-Complete (as outlined above). Given this, if I had to propose the best algorithm I could for the problem:
Try some iterations of quadratic integer programming, formulating the problem as: SUM_ij a_ij x_i y_j, with the x_i and y_j variables constrained to be either 0 or 1. For some matrices I think this will find a solution quickly, for the hardest cases it would be no better than brute force (and not much would be).
In parallel (and using most of the CPU), use a approximate search algorithm to generate increasingly better solutions. Simulating Annealing was suggested in another answer, but having done research on similar combinatorial optimisation problems, my experience is that tabu search would find good solutions faster. This is probably close to optimal in terms of wandering between distinct "potentially better" solutions in the shortest time, if you use the trick of incrementally updating the costs of single changes (see my paper "Graph domination, tabu search and the football pool problem").
Use the best solution so far from the second above to steer the first by avoiding searching possibilities that have lower bounds worse than it.
Obviously this isn't guaranteed to find the maximal solution. But, it generally would when this is feasible, and it would provide a very good locally maximal solution otherwise. If someone had a practical situation requiring such optimisation, this is the solution that I'd think would work best.
Stopping at identifying that a problem is likely to be NP-Complete will not look good in a job interview! (Unless the job is in complexity theory, but even then I wouldn't.) You need to suggest good approaches - that is the point of a question like this. To see what you can come up with under pressure, because the real world often requires tackling such things.
yes, it's NP-complete problem.
It's hard to easily find the best sub-matrix,but we can easily to find some better sub-matrix.
Assume that we give m random points in the matrix as "feeds". then let them to automatically extend by the rules like :
if add one new row or column to the feed-matrix, ensure that the sum will be incrementive.
,then we can compare m sub-matrix to find the best one.
Let's say n = 10.
Brute force (all possible sets of rows x all possible sets of columns) takes
2^10 * 2^10 =~ 1,000,000 nodes.
My first approach was to consider this a tree search, and use
the sum of positive entries is an upper bound for every node in the subtree
as a pruning method. Combined with a greedy algorithm to cheaply generate good initial bounds, this yielded answers in about 80,000 nodes on average.
but there is a better way ! i later realised that
Fix some choice of rows X.
Working out the optimal columns for this set of rows is now trivial (keep a column if its sum of its entries in the rows X is positive, otherwise discard it).
So we can just brute force over all possible choices of rows; this takes 2^10 = 1024 nodes.
Adding the pruning method brought this down to 600 nodes on average.
Keeping 'column-sums' and incrementally updating them when traversing the tree of row-sets should allow the calculations (sum of matrix etc) at each node to be O(n) instead of O(n^2). Giving a total complexity of O(n * 2^n)
For slightly less than optimal solution, I think this is a PTIME, PSPACE complexity issue.
The GREEDY algorithm could run as follows:
Load the matrix into memory and compute row totals. After that run the main loop,
1) Delete the smallest row,
2) Subtract the newly omitted values from the old row totals
--> Break when there are no more negative rows.
Point two is a subtle detail: subtracted two rows/columns has time complexity n.
While re-summing all but two columns has n^2 time complexity!
Take each row and each column and compute the sum. For a 2x2 matrix this will be:
2 1
3 -10
Row(0) = 3
Row(1) = -7
Col(0) = 5
Col(1) = -9
Compose a new matrix
Cost to take row Cost to take column
3 5
-7 -9
Take out whatever you need to, then start again.
You just look for negative values on the new matrix. Those are values that actually substract from the overall matrix value. It terminates when there're no more negative "SUMS" values to take out (therefore all columns and rows SUM something to the final result)
In an nxn matrix that would be O(n^2)Log(n) I think
function pruneMatrix(matrix) {
max = -inf;
bestRowBitField = null;
bestColBitField = null;
for(rowBitField=0; rowBitField<2^matrix.height; rowBitField++) {
for (colBitField=0; colBitField<2^matrix.width; colBitField++) {
sum = calcSum(matrix, rowBitField, colBitField);
if (sum > max) {
max = sum;
bestRowBitField = rowBitField;
bestColBitField = colBitField;
}
}
}
return removeFieldsFromMatrix(bestRowBitField, bestColBitField);
}
function calcSumForCombination(matrix, rowBitField, colBitField) {
sum = 0;
for(i=0; i<matrix.height; i++) {
for(j=0; j<matrix.width; j++) {
if (rowBitField & 1<<i && colBitField & 1<<j) {
sum += matrix[i][j];
}
}
}
return sum;
}

Resources