Related
I actually tried to search this, I'm sure this basic algorithm is everywhere on internet, CS textbooks etc, but I cannot find the right words to search it.
What I want from this algorithm to do is write "A" and "B" with the limit always increasing by 2. Like I want it to write A 3 times, then B 5 times, then A 7 times, then B 9 times and so on. And I plan to have 100 elements in total.
Like: AAABBBBBAAAAAAABBBBBBBBB...
I only want to use a single "for loop" for the entire 100 elements starting from 1 to 100. And just direct/sort "A" and "B" through "if/else if/ else".
I'm just asking for the basic mathematical algorithm behind it, showing it through any programming language would be better or redirecting me to such topic would also be fine.
You can do something like this:
There might be shorter answers, but I find this one easy to understand.
Basically, you keep a bool variable that will tell you if it's A's turn or Bs. Then we keep a variable switch that will tell us when we should switch between them. times is being updated with the repeated times we need to print the next character.
A_B = true
times = 3 // 3,5,7,9,...
switch = 3 // 3,8,15,24,...
for (i from 1 to 100)
if (A_B)
print 'A'
else
print 'B'
if (i == switch)
times += 2
switch += times
A_B = !A_B
Python:
for n in range(1, 101):
print "BA"[(int(sqrt(n)) % 2)],
The parity of the square roots of the integers follows that pattern. (Think that (n+1)²-n² = 2n+1.)
If you prefer to avoid the square root, it suffices to use an extra variable that represents the integer square root and keep it updated
r= 1
for n in range(1, 101):
if r * r <= n:
r+= 1
print "AB"[r % 2],
Here is the snippet you can test on this page. It is an example for about 500 letters totally, sure you can modify it for 100 letters. It is quite flexible that you can change the constants to produce lot of different strings in the same manner.
var toRepeat = ['A', 'B'];
var result='', j, i=3;
var sum=i;
var counter = 0;
while (sum < 500) {
j = counter % 2;
result = result + toRepeat[j].repeat(i);
sum = sum + i;
i = i + 2;
counter++;
}
document.getElementById('hLetters').innerHTML=result;
console.log(result);
<div id="hLetters"></div>
If you want it to be exactly 500 / 100 letters, just use a substring function to trim off the extra letters from the end.
To get 100 groups of A and B with increasing length of 3, 5, 7 and so on, you can run this Python code:
''.join(('B' if i % 2 else 'A') * (2 * i + 3) for i in range(100))
The output is a string of 10200 characters.
If you want the output to have only 100 characters, you can use:
import math
''.join(('B' if math.ceil(math.sqrt(i)) % 2 else 'A') for i in range(2, 102))
In js you can start with somethink like this :
$res ="";
count2 = 0;
for (i=2;i<100; i = i+2) {
count = 0;
alert(i);
while (count < i ) {
$res = $res.concat(String.fromCharCode(65+count2));
count++;
}
count2++;
}
alert ($res);
This is a homework assignment that I've been working on to compute if a credit card number is valid. It has many steps and uses 2 other helper functions.
The first helper function makes a list consisting of each digit in n:
def intToList(n):
strr = [num for num in str(n)]
theList = list(map(int, strr))
return theList
The second helper function adds the sum of digits in a number. For example:
def addDigits(n):
sums = 0
while n:
if n > 0:
sums += n % 10
n //= 10
else:
return
return sums
>>>(332) #(3+3+2) = 7
>>> 7
So the function I am working on is suppose to validate a 16 digit credit card number. It has specific orders to follow in the order given.
Verifies that it contains only digits. #Done.
Verifies that it is 16 digits long. #Done.
if n is a string, it converts it to an integer.
creates a list using the function intToList(n).
Multiplies the odd indices of the list made by intToList(n) by 2 and any products that produce two-digit numbers are replaced by the sum of the digits using the function addDigits(n).
Computes the sum of all the single digits in the list made my intToList(n). If the sum is equal to 0 modulo 10, the original value, n, is a valid credit card number.
As of right now I have this:
def checkCreditCard(n):
#Suppose to convert n to int.
n = int(n)
#Helper function 1 to make a list.
myList = intToList(n)
#For loop to apply the math to each odd indices.*
for ele in myList:
if ele % 2 == 1:
ele *= 2
if ele >= 10:
single = addDigits(?) #not sure what to put I've tried everything
if sum(myList) % 10 == 0:
return True
return False
Here is my issue, I am unsure where to go from here. I am pretty sure the code above is correct so far, but I don't know how to make the products that produce two-digit numbers compute to single digit ones using my function and computes the sum of all the single digits in the list.
Any help would be greatly appreciated. Let me know if I can clear anything up.
added what I've worked on.
Simple trick: The sum of the digits of all numbers from 10 to 18 (the possible two digit values for doubling or adding single digit values) can be computed simply by subtracting 9. So if you have a possible single, possibly double digit value, you can use it as a single digit with:
singledigit = maybetwodigit - 9 * (maybetwodigit >= 10)
For the record, your code as written is not correct:
def checkCreditCard(n):
#My checks for length and digits.
if len(str(n)) == 16 and str(n).isdigit():
return True
else:
return False
# nothing at this line or below will ever execute, because both your if
# and else conditions return
Also, your (currently unused) loop will never work, because you don't assign what you've calculated. You probably want something like this:
for i, ele in enumerate(myList):
if i % 2 == 1:
ele *= 2
myList[i] = ele - 9 * (ele >= 10) # Seamlessly sum digits of two digit nums
For instance:
8 > 10 = true, since 8 is divisible by 2 three times and 10 only once.
How can I compare two integers from any range of numbers? Are the modulo and divide operator capable of doing this task?
Use binary caculate to judge it
def devided_by_two(i)
return i.to_s(2).match(/0*$/).to_s.count('0')
end
To make integer divisibility by 2, just transcode it to binary and judge how many zero from end of banary number. The code I provide can be more simple I think.
Yes, they are capable. A number is even if, when you divide it by two, the remainder is zero.
Hence, you can use a loop to continuously divide by two until you get an odd number, keeping a count of how many times you did it.
The (pseudo-code) function for assigning a "divisibility by two, continuously" value to a number would be something like:
def howManyDivByTwo(x):
count = 0
while x % 2 == 0:
count = count + 1
x = x / 2 # make sure integer division
return count
That shouldn't be too hard to turn into Ruby (or any procedural-type language, really), such as:
def howManyDivByTwo(x)
count = 0
while x % 2 == 0
count = count + 1
x = x / 2
end
return count
end
print howManyDivByTwo(4), "\n"
print howManyDivByTwo(10), "\n"
print howManyDivByTwo(11), "\n"
print howManyDivByTwo(65536), "\n"
This outputs the correct:
2
1
0
16
Astute readers will have noticed there's an edge case in that function, you probably don't want to try passing zero to it. If it was production code, you'd need to catch that and act intelligently since you can divide zero by two until the cows come home, without ever reaching an odd number.
What value you return for zero depends on needs you haven't specified in detail. Theoretically (mathematically), you should return infinity but I'll leave that up to you.
Notice that you will likely mess up much of your code if you redefine such basic method. Knowing that, this is how it's done:
class Integer
def <=> other
me = self
return 0 if me.zero? and other.zero?
return -1 if other.zero?
return 1 if me.zero?
while me.even? and other.even?
me /= 2
other /= 2
end
return 0 if me.odd? and other.odd?
return -1 if me.odd?
return 1 if other.odd? # This condition is redundant, but is here for symmetry.
end
end
I've been learning Ruby, so I thought I'd try my hand at some of the project Euler puzzles. Embarrassingly, I only made it to problem 4...
Problem 4 goes as follows:
A palindromic number reads the same
both ways. The largest palindrome made
from the product of two 2-digit
numbers is 9009 = 91 × 99.
Find the largest palindrome made from
the product of two 3-digit numbers.
So I figured I would loop down from 999 to 100 in a nested for loop and do a test for the palindrome and then break out of the loops when I found the first one (which should be the largest one):
final=nil
range = 100...1000
for a in range.to_a.reverse do
for b in range.to_a.reverse do
c=a*b
final=c if c.to_s == c.to_s.reverse
break if !final.nil?
end
break if !final.nil?
end
puts final
This does output a palindrome 580085, but apparently this isn't the highest product of two three-digit numbers within the range. Strangely, the same code succeeds to return 9009, like in the example, if I change the range to 10...100.
Can someone tell me where I am going
wrong?
Also, is there a nicer way to
break out of the internal loop?
Thanks
You are testing 999* (999...100), then 998 * (999...100)
Hence you will be testing 999 * 500 before you test 997 * 996.
So, how you we find that right number?
First note the multiplication is reflective, a * b == b * a, so b need not go from 999...0 every time, just a ...0.
When you find a palindrone, add the two factors together and save the sum (save the two factors also)
Inside the loop, if (a+b) is ever less than the saved sum, abandon the inner loop and move to the next a. When a falls below sum/2, no future value you could find would be higher than the one you've already found, so you're done.
The problem is that you might find a palindrome for an a of 999 and a b of 200, but you break too soon, so you never see that there is one for 998*997 (just example numbers).
You need to either look for all palindromes or once you find the first one, set that b as your minimum bound and continue looking through the a loop.
Regarding the second question, my advice is to approach the problem in more functional, than procedural manner. So, rather than looping, you may try to "describe" your problem functionally, and let Ruby does the work:
From all the pairs of 3-digit numbers,
select only those whose product is a palindrome,
and find the one with the largest product
Although this approach may not yield the most efficient of the solutions, it may teach you couple of Ruby idioms.
Consider the digits of P – let them be x, y and z. P must be at least 6 digits long since the palindrome 111111 = 143×777 – the product of two 3-digit integers. Since P is palindromic:
P=100000x + 10000y + 1000z + 100z + 10y + x
P=100001x + 10010y + 1100z
P=11(9091x + 910y + 100z)
Since 11 is prime, at least one of the integers a or b must have a factor of 11. So if a is not divisible by 11 then we know b must be. Using this information we can determine what values of b we check depending on a.
C# Implementation :
using System;
namespace HighestPalindrome
{
class Program
{
static void Main(string[] args)
{
int i, j;
int m = 1;
bool flag = false;
while (true)
{
if (flag) j = m + 1;
else j = m;
for (i = m; i > 0; i--)
{
Console.WriteLine("{0} * {1} = {2}", 1000 - i, 1000 - j, (1000 - i) * (1000 - j));
j++;
//--- Palindrome Check ------------------------------
int number, temp, remainder, sum = 0;
number = temp = (1000 - i) * (1000 - j);
while (number > 0)
{
remainder = number % 10;
number /= 10;
sum = sum * 10 + remainder;
}
if (sum == temp)
{
Console.WriteLine("Highest Palindrome Number is - {0} * {1} = {2}", 1000 - i, 1000 - j, temp);
Console.ReadKey();
return;
}
//---------------------------------------------------
}
if (flag)
m++;
flag = !flag;
}
}
}
}
The mistake is you assume that if you find palindrom with greatest a value it will give the greatest product it isn't true. Solution is to keep max_product value and update it against solution you find.
I can answer your first question: You need to find the highest product, not the product containing the highest factor. In other words a * b could be greater than c * d even if c > a > b.
You're breaking on the first palindrome you come to, not necessarily the biggest.
Say you have A,B,C,D,E. You test E * A before you test D * C.
The main thing is to go through all the possible values. Don't try to break when you find the first answer just start with a best answer of zero then try all combinations and keep updating best. The secondary thing is to try to reduce the set of "all combinations".
One thing you can do is limit your inner loop to values less than or equal to a (since ab == ba). This puts the larger value of your equation always in a and substantially reduces the number of values you have to test.
for a in range.to_a.reverse do
for b in (100..a).to_a.reverse do
The next thing you can do is break out of the inner loop whenever the product is less than the current best value.
c = a*b
next if c < best
Next, if you're going to go through them all anyway there's no benefit to going through them in reverse. By starting at the top of the range it takes a while before you find a palindromic number and as a result it takes a while to reduce your search set. If you start at the bottom you begin to increase the lower bound quickly.
for a in range.to_a do
for b in (100..a).to_a do
My tests show that either way you try some 405K pairs however. So how about thinking of the problem a different way. What is the largest possible product of two 3 digit numbers? 999 * 999 = 998001 and the smallest is 100*100 = 10000. How about we take the idea you had of breaking on the first answer but apply it to a different range, that being 998001 to 10000 (or 999*999 to 100*100).
for c in (10000...998001).to_a.reverse do
We get to a palindrome after only 202 tests... the problem is it isn't a product of two 3-digit numbers. So now we have to check whether the palindrome we've found is a product of 2 3-digit numbers. As soon as we find a value in the range that is a palindrome and a product of two 3-digit numbers we're done. My tests show we find the highest palindrome that meets the requirement after less than 93K tests. But since we have the overhead of checking that all palindromes to that point were products of two 3-digit numbers it may not be more efficient than the previous solution.
So lets go back to the original improvement.
for a in range.to_a.reverse do
for b in (100..a).to_a.reverse do
We're looping rows then columns and trying to be efficient by detecting a point where we can go to the next row because any additional trys on the current row could not possibly be better than our current best. What if, instead of going down the rows, we go across the diagonals?
Since the products get smaller diagonal by diagonal you can stop as soon as you find a palindome number. This is a really efficient solution but with a more complex implementation. It turns out this method finds the highest palindrome after slightly more than 2200 trys.
ar=[]
limit = 100..999
for a in limit.to_a.reverse do
for b in (100..a).to_a.reverse do
c=a*b
if c.to_s == c.to_s.reverse
palndrm=c
ar << palndrm
end
end
end
print ar
print"\n"
puts ar.max
puts ar.min
an implementation:
max = 100.upto(999).inject([-1,0,0]) do |m, a|
a.upto(999) do |b|
prod = a * b
m = [prod, a, b] if prod.to_s == prod.to_s.reverse and prod > m[0]
end
m
end
puts "%d = %d * %d" % max
prints 906609 = 913 * 993
Here's what I came up with in Ruby:
def largest_palindrome_product(digits)
largest, upper, lower = 0, 10**digits - 1, 10**(digits - 1)
for i in upper.downto(lower) do
for j in i.downto(lower) do
product = i * j
largest = product if product > largest && palindrome?(product)
end
end
largest
end
And here's the function to check if the number is a palindrome:
def palindrome?(input)
chars = input.to_s.chars
for i in 0..(chars.size - 1) do
return false if chars[i] != chars[chars.size - i - 1]
end
true
end
I guess there's probably a more efficient solution out there, though.
For this problem, as we are looking for the highest palindrom, i assumed it would start with a 9. Thus ending with a 9 (palindrom).
if you pay attention, to get a number finishing by 9, you can only get it with numbers finishing by 9 and 1, 3 and 3, 7 and 7.
Then it is useless to check the other values (for instance 999*998 as it will not end with a 9).
Starting from 999 and 991, you can then substract 10 to 991, trying 999 and 981 etc...
You do the same with 993 and 993 ... 993 * 983
same with 997 * 997 then 997 * 987 etc
You don't need to go further than 900 or 10^4 - 10^3 as you can be sure the highest will be before.
int PB4_firstTry(int size)
{
int nb1 = (int)pow(10.0,size+1.0) - 1, nb2 = (int)pow(10.0,size+1.0) - 1;
int pal91 = getFirstPalindrome(size,9,1);
int pal33 = getFirstPalindrome(size,3,3);
int pal77 = getFirstPalindrome(size,7,7);
int bigger1 = (pal91 > pal33) ? pal91 : pal33;
return (bigger1 > pal77) ? bigger1 : pal77;
}
int getFirstPalindrome(int size,int ending1,int ending2)
{
int st1 = (int)pow(10.0,size+1.0) - 10 + ending1;
int comp = st1 - pow(10.0,size);
int st2 = (int)pow(10.0,size+1.0) - 10 + ending2;
int answer = -1;
while (st1 > comp)
{
for (int i = st2; i > comp && st1*i > answer; i-=10)
{
if (PB4_isPalindrome(st1*i))
answer = st1*i;
}
st1 -= 10;
}
return answer;
}
bool PB4_isPalindrome(int number)
{
std::string str = intToString(number);
for (int i = 0; i < (int)(str.length() / 2); i++)
{
if (str[i] != str[str.length() - 1 - i])
return false;
}
return true;
}
std::string intToString(int number)
{
std::ostringstream convert;
convert << number;
return convert.str();
}
Of course, this works for 4 size digits factors etc.
I'm trying to figure out a way to create random numbers that "feel" random over short sequences. This is for a quiz game, where there are four possible choices, and the software needs to pick one of the four spots in which to put the correct answer before filling in the other three with distractors.
Obviously, arc4random % 4 will create more than sufficiently random results over a long sequence, but in a short sequence its entirely possible (and a frequent occurrence!) to have five or six of the same number come back in a row. This is what I'm aiming to avoid.
I also don't want to simply say "never pick the same square twice," because that results in only three possible answers for every question but the first. Currently I'm doing something like this:
bool acceptable = NO;
do {
currentAnswer = arc4random() % 4;
if (currentAnswer == lastAnswer) {
if (arc4random() % 4 == 0) {
acceptable = YES;
}
} else {
acceptable = YES;
}
} while (!acceptable);
Is there a better solution to this that I'm overlooking?
If your question was how to compute currentAnswer using your example's probabilities non-iteratively, Guffa has your answer.
If the question is how to avoid random-clustering without violating equiprobability and you know the upper bound of the length of the list, then consider the following algorithm which is kind of like un-sorting:
from random import randrange
# randrange(a, b) yields a <= N < b
def decluster():
for i in range(seq_len):
j = (i + 1) % seq_len
if seq[i] == seq[j]:
i_swap = randrange(i, seq_len) # is best lower bound 0, i, j?
if seq[j] != seq[i_swap]:
print 'swap', j, i_swap, (seq[j], seq[i_swap])
seq[j], seq[i_swap] = seq[i_swap], seq[j]
seq_len = 20
seq = [randrange(1, 5) for _ in range(seq_len)]; print seq
decluster(); print seq
decluster(); print seq
where any relation to actual working Python code is purely coincidental. I'm pretty sure the prior-probabilities are maintained, and it does seem break clusters (and occasionally adds some). But I'm pretty sleepy so this is for amusement purposes only.
You populate an array of outcomes, then shuffle it, then assign them in that order.
So for just 8 questions:
answer_slots = [0,0,1,1,2,2,3,3]
shuffle(answer_slots)
print answer_slots
[1,3,2,1,0,2,3,0]
To reduce the probability for a repeated number by 25%, you can pick a random number between 0 and 3.75, and then rotate it so that the 0.75 ends up at the previous answer.
To avoid using floating point values, you can multiply the factors by four:
Pseudo code (where / is an integer division):
currentAnswer = ((random(0..14) + lastAnswer * 4) % 16) / 4
Set up a weighted array. Lets say the last value was a 2. Make an array like this:
array = [0,0,0,0,1,1,1,1,2,3,3,3,3];
Then pick a number in the array.
newValue = array[arc4random() % 13];
Now switch to using math instead of an array.
newValue = ( ( ( arc4random() % 13 ) / 4 ) + 1 + oldValue ) % 4;
For P possibilities and a weight 0<W<=1 use:
newValue = ( ( ( arc4random() % (P/W-P(1-W)) ) * W ) + 1 + oldValue ) % P;
For P=4 and W=1/4, (P/W-P(1-W)) = 13. This says the last value will be 1/4 as likely as other values.
If you completely eliminate the most recent answer it will be just as noticeable as the most recent answer showing up too often. I do not know what weight will feel right to you, but 1/4 is a good starting point.