Shuffle and sort, less nodes than pairs - hadoop

I am trying to understand MapReduce so this is a very noob question. I am looking at the picture below. From my understanding, which might very well be wrong, there is four nodes in the mapping phase and then there is 7 nodes in the shuffle phase. Every key:value pair is moved to different node. My question is what happens if there's only 3 nodes in the shuffle phase? If you have four equal sized key:value pair, can you move them arbitrarily to nodes so it doesn't matter that one is twice the size as the rest or do you split one of the pairs and spread it out evenly?

This image doesn't display actual nodes. Instead, each shuffle/reduce rectangle is a single call to reduce() function. There are 7 of them because 7 distinct keys were emitted by mapper stage. These calls are distributed among reduce tasks. You configure number of reduce tasks yourself with job.setNumReduceTasks(5). If you have one reduce task, all calls will happen there. If you have two reduce tasks, some calls will happen in the first reduce task, others -- in another one (as controlled by Partitioner). If you have 1000 reduce tasks, only some reduce tasks will get reduce() calls, others won't process any data at all.
Reduce tasks are started as separate processes on physical cluster nodes. They may start all simultaneously or not (depends on how many resources you have and also on your scheduler).

Related

How is the number of map and reduce tasks is determined?

When running certain file on Hadoop using map reduce, sometimes it creates 1 map task and 1 reduce tasks while other file can use 4 map and 1 reduce tasks.
My question is based on what the number of map and reduce tasks is being decided?
is there a certain map/reduce size after which a new map/reduce is created?
Many Thanks Folks.
From the the official doc :
The number of maps is usually driven by the number of DFS blocks in
the input files. Although that causes people to adjust their DFS block
size to adjust the number of maps. The right level of parallelism for
maps seems to be around 10-100 maps/node, although we have taken it up
to 300 or so for very cpu-light map tasks. Task setup takes awhile, so
it is best if the maps take at least a minute to execute.
The ideal reducers should be the optimal value that gets them closest to:
A multiple of the block size
A task time between 5 and 15 minutes
Creates the fewest files possible
Anything other than that means there is a good chance your reducers are less than great. There is a tremendous tendency for users to use a REALLY high value ("More parallelism means faster!") or a REALLY low value ("I don't want to blow my namespace quota!"). Both are equally dangerous, resulting in one or more of:
Terrible performance on the next phase of the workflow
Terrible performance due to the shuffle
Terrible overall performance because you've overloaded the namenode with objects that are ultimately useless
Destroying disk IO for no really sane reason
Lots of network transfers
The number of Mappers is equal to the the number of HDFS blocks for the input file that will be processed.
The number of reducers ideally should be about 10% of your total mappers. Say you have 100 mappers then ideally the number of reducers should be somewhere around 10.
But however it is possible specify the number of reducers in our Map Reduce job.

How to number my splits and choosing right number of mappers/reducers

My map reduce job is looking like the following:
I map the first 2 blocks to the key 1,the next two will be mapped to the key 2 and so on, as you can refer from the picture:
Now, by theory i want to send each of this keys to a reducer.
But my question is:
How to choose the proper amount of mappers/reducers in reality?
It looks like i need to have #mappers = #num of hdfs blocks,
and the num of the #reducers will be half of #mappers.
Is that a good approach?
What is the right choice for this case?
Partitioning your job into maps and reduces
Picking the appropriate size for the tasks for your job can radically change the performance of Hadoop. Increasing the number of tasks increases the framework overhead, but increases load balancing and lowers the cost of failures. At one extreme is the 1 map/1 reduce case where nothing is distributed. The other extreme is to have 1,000,000 maps/ 1,000,000 reduces where the framework runs out of resources for the overhead.
Number of Maps
The number of maps is usually driven by the number of DFS blocks in the input files. Although that causes people to adjust their DFS block size to adjust the number of maps. The right level of parallelism for maps seems to be around 10-100 maps/node, although we have taken it up to 300 or so for very cpu-light map tasks. Task setup takes awhile, so it is best if the maps take at least a minute to execute.
Actually controlling the number of maps is subtle. The mapred.map.tasks parameter is just a hint to the InputFormat for the number of maps. The default InputFormat behavior is to split the total number of bytes into the right number of fragments. However, in the default case the DFS block size of the input files is treated as an upper bound for input splits. A lower bound on the split size can be set via mapred.min.split.size. Thus, if you expect 10TB of input data and have 128MB DFS blocks, you'll end up with 82k maps, unless your mapred.map.tasks is even larger. Ultimately the InputFormat determines the number of maps.
The number of map tasks can also be increased manually using the JobConf's conf.setNumMapTasks(int num). This can be used to increase the number of map tasks, but will not set the number below that which Hadoop determines via splitting the input data.
Number of Reduces
The ideal reducers should be the optimal value that gets them closest to:
A multiple of the block size * A task time between 5 and 15 minutes * Creates the fewest files possible
Anything other than that means there is a good chance your reducers are less than great. There is a tremendous tendency for users to use a REALLY high value ("More parallelism means faster!") or a REALLY low value ("I don't want to blow my namespace quota!"). Both are equally dangerous, resulting in one or more of:
Terrible performance on the next phase of the workflow * Terrible performance due to the shuffle * Terrible overall performance because you've overloaded the namenode with objects that are ultimately useless * Destroying disk IO for no really sane reason * Lots of network transfers due to dealing with crazy amounts of CFIF/MFIF work
Now, there are always exceptions and special cases. One particular special case is that if following that advice makes the next step in the workflow do ridiculous things, then we need to likely 'be an exception' in the above general rules of thumb.
Currently the number of reduces is limited to roughly 1000 by the buffer size for the output files (io.buffer.size * 2 * numReduces << heapSize). This will be fixed at some point, but until it is it provides a pretty firm upper bound.
The number of reduce tasks can also be increased in the same way as the map tasks, via JobConf's conf.setNumReduceTasks(int num).
I got this, I think it will solve your confusion regarding num of reducer
Let's say that you have 100 reduce slots available in your cluster.
With a load factor of 0.95 all the 95 reduce tasks will start at the same time, since there are enough reduce slots available for all the tasks. This means that no tasks will be waiting in the queue, until one of the rest finishes. I would recommend this option when the reduce tasks are "small", i.e., finish relatively fast, or they all require the same time, more or less.
On the other hand, with a load factor of 1.75, 100 reduce tasks will start at the same time, as many as the reduce slots available, and the 75 rest will be waiting in the queue, until a reduce slot becomes available. This offers better load balancing, since if some tasks are "heavier" than others, i.e., require more time, then they will not be the bottleneck of the job, since the other reduce slots, instead of finishing their tasks and waiting, will now be executing the tasks in the queue. This also lightens the load of each reduce task, since the data of the map output is spread to more tasks.
https://github.com/paulhoule/infovore/wiki/Choosing-the-number-of-reducers

Where to add specific function in the Map/Reduce Framework

I have a general question to the MAP/Reduce Framework.
I have a task, which can be separated into several partitions. For each partition, I need to run a computation intensive algorithm.
Then, according to the MAP/Reduce Framework, it seems that I have two choices:
Run the algorithm in the Map stage, so that in the reduce stage, there is no work needed to be done, except collect the results of each partition from the Map stage and do summarization
In the Map stage, just divide and send the partitions (with data) to the reduce stage. In the reduce stage, run the algorithm first, and then collect and summarize the results from each partitions.
Correct me if I misunderstand.
I am a beginner. I may not understand the MAP/Reduce very well. I only have basic parallel computing concept.
You're actually really confused. In a broad and general sense, the map portion takes the task and divides it among some n many nodes or so. Those n nodes that receive a fraction of the whole task do something with their piece. When finished computing some steps on their data, the reduce operation reassembles the data.
The REAL power of map-reduce is how scalable it is.
Given a dataset D running on a map-reduce cluster m with n nodes under it, each node is mapped 1/D pieces of the task. Then the cluster m with n nodes reduces those pieces into a single element. Now, take a node q to be a cluster n with p nodes under it. If m assigns q 1/D, q can map 1/D to (1/D)/p with respect to n. Then n's nodes can reduce the data back to q where q can supply its data to its neighbors for m.
Make sense?
In MapReduce, you have a Mapper and a Reducer. You also have a Partitioner and a Combiner.
Hadoop is a distributed file system that partitions(or splits, you might say) the file into blocks of BLOCK SIZE. These partitioned blocks are places on different nodes. So, when a job is submitted to the MapReduce Framework, it divides that job such that there is a Mapper for every input split(for now lets say it is the partitioned block). Since, these blocks are distributed onto different nodes, these Mappers also run on different nodes.
In the Map stage,
The file is divided into records by the RecordReader, the definition of record is controlled by InputFormat that we choose. Every record is a key-value pair.
The map() of our Mapper is run for every such record. The output of this step is again in key-value pairs
The output of our Mapper is partitioned using the Partitioner that we provide, or the default HashPartitioner. Here in this step, by partitioning, I mean deciding which key and its corresponding values go to which Reducer(if there is only one Reducer, its of no use anyway)
Optionally, you can also combine/minimize the output that is being sent to the reducer. You can use a Combiner to do that. Note that, the framework does not guarantee the number of times a Combiner will be called. It is only part of optimization.
This is where your algorithm on the data is usually written. Since these tasks run in parallel, it makes a good candidate for computation intensive tasks.
After all the Mappers complete running on all nodes, the intermediate data i.e the data at end of Map stage is copied to their corresponding reducer.
In the Reduce stage, the reduce() of our Reducer is run on each record of data from the Mappers. Here the record comprises of a key and its corresponding values, not necessarily just one value. This is where you generally run your summarization/aggregation logic.
When you write your MapReduce job you usually think about what can be done on each record of data in both the Mapper and Reducer. A MapReduce program can just contain a Mapper with map() implemented and a Reducer with reduce() implemented. This way you can focus more on what you want to do with the data and not bother about parallelizing. You don't have to worry about how the job is split, the framework does that for you. However, you will have to learn about it sooner or later.
I would suggest you to go through Apache's MapReduce tutorial or Yahoo's Hadoop tutorial for a good overview. I personally like yahoo's explanation of Hadoop but Apache's details are good and their explanation using word count program is very nice and intuitive.
Also, for
I have a task, which can be separated into several partitions. For
each partition, I need to run a computing intensive algorithm.
Hadoop distributed file system has data split onto multiple nodes and map reduce framework assigns a task to every every split. So, in hadoop, the process goes and executes where the data resides. You cannot define the number of map tasks to run, data does. You can however, specify/control the number of reduce tasks.
I hope I have comprehensively answered your question.

What is the purpose of shuffling and sorting phase in the reducer in Map Reduce Programming?

In Map Reduce programming the reduce phase has shuffling, sorting and reduce as its sub-parts. Sorting is a costly affair.
What is the purpose of shuffling and sorting phase in the reducer in Map Reduce Programming?
First of all shuffling is the process of transfering data from the mappers to the reducers, so I think it is obvious that it is necessary for the reducers, since otherwise, they wouldn't be able to have any input (or input from every mapper). Shuffling can start even before the map phase has finished, to save some time. That's why you can see a reduce status greater than 0% (but less than 33%) when the map status is not yet 100%.
Sorting saves time for the reducer, helping it easily distinguish when a new reduce task should start. It simply starts a new reduce task, when the next key in the sorted input data is different than the previous, to put it simply. Each reduce task takes a list of key-value pairs, but it has to call the reduce() method which takes a key-list(value) input, so it has to group values by key. It's easy to do so, if input data is pre-sorted (locally) in the map phase and simply merge-sorted in the reduce phase (since the reducers get data from many mappers).
Partitioning, that you mentioned in one of the answers, is a different process. It determines in which reducer a (key, value) pair, output of the map phase, will be sent. The default Partitioner uses a hashing on the keys to distribute them to the reduce tasks, but you can override it and use your own custom Partitioner.
A great source of information for these steps is this Yahoo tutorial (archived).
A nice graphical representation of this is the following (shuffle is called "copy" in this figure):
Note that shuffling and sorting are not performed at all if you specify zero reducers (setNumReduceTasks(0)). Then, the MapReduce job stops at the map phase, and the map phase does not include any kind of sorting (so even the map phase is faster).
UPDATE: Since you are looking for something more official, you can also read Tom White's book "Hadoop: The Definitive Guide". Here is the interesting part for your question.
Tom White has been an Apache Hadoop committer since February 2007, and is a member of the Apache Software Foundation, so I guess it is pretty credible and official...
Let's revisit key phases of Mapreduce program.
The map phase is done by mappers. Mappers run on unsorted input key/values pairs. Each mapper emits zero, one, or multiple output key/value pairs for each input key/value pairs.
The combine phase is done by combiners. The combiner should combine key/value pairs with the same key. Each combiner may run zero, once, or multiple times.
The shuffle and sort phase is done by the framework. Data from all mappers are grouped by the key, split among reducers and sorted by the key. Each reducer obtains all values associated with the same key. The programmer may supply custom compare functions for sorting and a partitioner for data split.
The partitioner decides which reducer will get a particular key value pair.
The reducer obtains sorted key/[values list] pairs, sorted by the key. The value list contains all values with the same key produced by mappers. Each reducer emits zero, one or multiple output key/value pairs for each input key/value pair.
Have a look at this javacodegeeks article by Maria Jurcovicova and mssqltips article by Datta for a better understanding
Below is the image from safaribooksonline article
I thought of just adding some points missing in above answers. This diagram taken from here clearly states the what's really going on.
If I state again the real purpose of
Split: Improves the parallel processing by distributing the processing load across different nodes (Mappers), which would save the overall processing time.
Combine: Shrinks the output of each Mapper. It would save the time spending for moving the data from one node to another.
Sort (Shuffle & Sort): Makes it easy for the run-time to schedule (spawn/start) new reducers, where while going through the sorted item list, whenever the current key is different from the previous, it can spawn a new reducer.
Some of the data processing requirements doesn't need sort at all. Syncsort had made the sorting in Hadoop pluggable. Here is a nice blog from them on sorting. The process of moving the data from the mappers to the reducers is called shuffling, check this article for more information on the same.
I've always assumed this was necessary as the output from the mapper is the input for the reducer, so it was sorted based on the keyspace and then split into buckets for each reducer input. You want to ensure all the same values of a Key end up in the same bucket going to the reducer so they are reduced together. There is no point sending K1,V2 and K1,V4 to different reducers as they need to be together in order to be reduced.
Tried explaining it as simply as possible
Shuffling is the process by which intermediate data from mappers are transferred to 0,1 or more reducers. Each reducer receives 1 or more keys and its associated values depending on the number of reducers (for a balanced load). Further the values associated with each key are locally sorted.
Because of its size, a distributed dataset is usually stored in partitions, with each partition holding a group of rows. This also improves parallelism for operations like a map or filter. A shuffle is any operation over a dataset that requires redistributing data across its partitions. Examples include sorting and grouping by key.
A common method for shuffling a large dataset is to split the execution into a map and a reduce phase. The data is then shuffled between the map and reduce tasks. For example, suppose we want to sort a dataset with 4 partitions, where each partition is a group of 4 blocks.The goal is to produce another dataset with 4 partitions, but this time sorted by key.
In a sort operation, for example, each square is a sorted subpartition with keys in a distinct range. Each reduce task then merge-sorts subpartitions of the same shade.
The above diagram shows this process. Initially, the unsorted dataset is grouped by color (blue, purple, green, orange). The goal of the shuffle is to regroup the blocks by shade (light to dark). This regrouping requires an all-to-all communication: each map task (a colored circle) produces one intermediate output (a square) for each shade, and these intermediate outputs are shuffled to their respective reduce task (a gray circle).
The text and image was largely taken from here.
There only two things that MapReduce does NATIVELY: Sort and (implemented by sort) scalable GroupBy.
Most of applications and Design Patterns over MapReduce are built over these two operations, which are provided by shuffle and sort.
This is a good reading. Hope it helps. In terms of sorting you are concerning, I think it is for the merge operation in last step of Map. When map operation is done, and need to write the result to local disk, a multi-merge will be operated on the splits generated from buffer. And for a merge operation, sorting each partition in advanced is helpful.
Well,
In Mapreduce there are two important phrases called Mapper and reducer both are too important, but Reducer is mandatory. In some programs reducers are optional. Now come to your question.
Shuffling and sorting are two important operations in Mapreduce. First Hadoop framework takes structured/unstructured data and separate the data into Key, Value.
Now Mapper program separate and arrange the data into keys and values to be processed. Generate Key 2 and value 2 values. This values should process and re arrange in proper order to get desired solution. Now this shuffle and sorting done in your local system (Framework take care it) and process in local system after process framework cleanup the data in local system.
Ok
Here we use combiner and partition also to optimize this shuffle and sort process. After proper arrangement, those key values passes to Reducer to get desired Client's output. Finally Reducer get desired output.
K1, V1 -> K2, V2 (we will write program Mapper), -> K2, V' (here shuffle and soft the data) -> K3, V3 Generate the output. K4,V4.
Please note all these steps are logical operation only, not change the original data.
Your question: What is the purpose of shuffling and sorting phase in the reducer in Map Reduce Programming?
Short answer: To process the data to get desired output. Shuffling is aggregate the data, reduce is get expected output.

How does partitioning in MapReduce exactly work?

I think I have a fair understanding of the MapReduce programming model in general, but even after reading the original paper and some other sources many details are unclear to me, especially regarding the partitioning of the intermediate results.
I will quickly summarize my understanding of MapReduce so far: We have a potentially very large input data set, which is automatically split up into M different pieces by the MR-Framework. For each piece, the framework schedules one map task which is executed by one of the available processors/machines in my cluster. Each of the M map tasks outputs a set of Key-Value-Pairs, which is stored locally on the same machine that executed this map task. Each machine divides its disk into R partitions and distributes its computed intermediate key value pairs based on the intermediate keys among the partitions. Then, the framework starts for each distinct intermediate key one reduce task which is again executed by any of the available machines.
Now my questions are:
In some tutorials it sounds like there could be map and reduce tasks executed in parallel. Is this right? How could that be, assuming that for each distinct intermediate key only one reduce task is started? Do we not have to wait until the last map task is finished before we can start the first reduce task?
As we have one reduce task per distinct intermediate key, is it right that each reduce task requires the executing machine to load the corresponding partition from every other machine? Potentially, every machine can have a key-value-pair with the desired intermediate key, so for each reduce task we potentially have to query all other machines. Is that really efficient?
The original paper says that the number of partitions (R) is specified by the user. But isn’t a partition the input for a reduce task? Or more exactly: Isn’t the union of all partitions with the same number among all machines the input of one reduce task? That would mean, that R depends on the number of distinct intermediate keys which the user usually doesn’t know.
Conceptually it is clear what the input and outputs of the map and reduce functions/tasks are. But I think I haven’t yet understood MapReduce on the technical level. Could somebody please help me understanding?
You can start the reducer tasks while the map tasks are still running (using a feature known as slowstart), but the reducers can only run the copy phase (acquiring the completed results from the completed map tasks. It will need to wait for all the mappers to complete before it can actually perform the final sort and reduce.
A reduce task actually processes zero, one or more keys (rather than a discrete tasks for each key). Each reducer will need to acquire the map output from each map task that relates to its partition before these intermediate outputs are sorted and then reduced one key set at a time.
Back to the note in 2 - a reducer task (one for each partition) runs on zero, one or more keys rather than a single task for each discrete key.
It's also important to understand the spread and variation of your intermediate key as it is hashed and modulo'd (if using the default HashPartitioner) to determine which reduce partition should process that key. Say you had an even number of reducer tasks (10), and output keys that always hashed to an even number - then in this case the modulo of these hashs numbers and 10 will always be an even number, meaning that the odd numbered reducers would never process any data.
Addendum to what Chris said,
Basically, a partitioner class in Hadoop (e.g. Default HashPartitioner)
has to implement this function,
int getPartition(K key, V value, int numReduceTasks)
This function is responsible for returning you the partition number and you get the number of reducers you fixed when starting the job from the numReduceTasks variable, as seen for in the HashPartitioner.
Based on what integer the above function return, Hadoop selects node where the reduce task for a particular key should run.
Hope this helps.

Resources