Get Driver Locked memory programmatically - windows

How can I get Driver Locked memory programmatically? WMI, WinApi anyway?

really not hard debug RAMMap[64].exe and view how it get this results. note - all used structures and api classes here undocumented. so as is. all data types declared in processhacker project. i will be use it as is : #include <phnt.h>
also in ntmmapi.h we can view next constants:
#define MMPFNUSE_PROCESSPRIVATE 0
#define MMPFNUSE_FILE 1
#define MMPFNUSE_PAGEFILEMAPPED 2
#define MMPFNUSE_PAGETABLE 3
#define MMPFNUSE_PAGEDPOOL 4
#define MMPFNUSE_NONPAGEDPOOL 5
#define MMPFNUSE_SYSTEMPTE 6
#define MMPFNUSE_SESSIONPRIVATE 7
#define MMPFNUSE_METAFILE 8
#define MMPFNUSE_AWEPAGE 9
#define MMPFNUSE_DRIVERLOCKPAGE 10
#define MMPFNUSE_KERNELSTACK 11
if compare it with screenshot - visible match.
tool first query physical memory ranges (displayed in 5 tab ) via (SystemSuperfetchInformation, SuperfetchMemoryRangesQuery) and than for every page (range) do query SuperfetchPfnQuery.
minimal code can look like:
NTSTATUS Rammap(PF_PHYSICAL_MEMORY_RANGE_INFO* ppmri, ULONGLONG Use[16], DWORD dwPageSize)
{
if (ULONG RangeCount = ppmri->RangeCount)
{
WCHAR kb[64];
ULONG_PTR TotalSize = 0;
PF_PHYSICAL_MEMORY_RANGE* Range = ppmri->Ranges;
PF_PFN_PRIO_REQUEST pprr = {
PF_PFN_PRIO_REQUEST_VERSION
};
SUPERFETCH_INFORMATION spi = {
SUPERFETCH_INFORMATION_VERSION, SUPERFETCH_INFORMATION_MAGIC, SuperfetchPfnQuery, &pprr, sizeof(pprr)
};
do
{
if (ULONG_PTR PageCount = Range->PageCount)
{
ULONG_PTR PfnCount;
ULONG_PTR BasePfn = Range->BasePfn;
ULONG_PTR
Start = BasePfn * dwPageSize,
Size = PageCount * dwPageSize,
End = Start + Size;
TotalSize += Size;
StrFormatKBSize(Size, kb, RTL_NUMBER_OF(kb));
DbgPrint("0x%016I64x\t0x%016I64x\t%S\n", Start, End, kb);
do
{
pprr.PfnCount = PfnCount = min(PageCount, RTL_NUMBER_OF(pprr.PageData));
MMPFN_IDENTITY* PageData = pprr.PageData;
do
{
PageData++->PageFrameIndex = BasePfn++;
} while (--PfnCount);
ULONG cb;
NTSTATUS status = NtQuerySystemInformation(SystemSuperfetchInformation, &spi, sizeof(spi), &cb);
if (0 <= status)
{
PageData = pprr.PageData;
PfnCount = pprr.PfnCount;
do
{
Use[PageData++->u1.e1.UseDescription]++;
} while (--PfnCount);
}
else
{
return status;
}
} while (PageCount -= pprr.PfnCount);
}
} while (Range++, --RangeCount);
StrFormatKBSize(TotalSize, kb, RTL_NUMBER_OF(kb));
DbgPrint("-------------\nTotalSize: %S\n", kb);
}
return STATUS_SUCCESS;
}
NTSTATUS Rammap(ULONGLONG Use[16], DWORD dwPageSize)
{
BOOLEAN b;
NTSTATUS status = RtlAdjustPrivilege(SE_PROF_SINGLE_PROCESS_PRIVILEGE, TRUE, FALSE, &b);
if (0 <= status)
{
SUPERFETCH_INFORMATION spi = {
SUPERFETCH_INFORMATION_VERSION, SUPERFETCH_INFORMATION_MAGIC, SuperfetchMemoryRangesQuery
};
ULONG rcb = sizeof(PF_PHYSICAL_MEMORY_RANGE_INFO);
static volatile UCHAR guz = 0;
PVOID stack = alloca(guz);
PF_PHYSICAL_MEMORY_RANGE_INFO* ppmri = 0;
do
{
if (spi.Length < rcb)
{
spi.Length = RtlPointerToOffset(spi.Data = alloca(rcb - spi.Length), stack);
ppmri = (PF_PHYSICAL_MEMORY_RANGE_INFO*)spi.Data;
ppmri->Version = PF_PHYSICAL_MEMORY_RANGE_INFO_VERSION;
}
if (0 <= (status = NtQuerySystemInformation(SystemSuperfetchInformation, &spi, sizeof(spi), &rcb)))
{
status = Rammap(ppmri, Use, dwPageSize);
break;
}
} while (status == STATUS_BUFFER_TOO_SMALL);
}
return status;
}
void Rammap()
{
SYSTEM_INFO sbi;
GetSystemInfo(&sbi);
ULONGLONG Use[16]={};
if (0 <= Rammap(Use, sbi.dwPageSize))
{
WCHAR sz[16], kb[32];
PCWSTR Name;
ULONG n = MMPFNUSE_KERNELSTACK;
do
{
ULONGLONG u = Use[n];
switch (n)
{
case MMPFNUSE_PROCESSPRIVATE: Name = L"Process Private";
break;
case MMPFNUSE_FILE: Name = L"Mapped File";
break;
case MMPFNUSE_PAGEFILEMAPPED: Name = L"Shareable";
break;
case MMPFNUSE_PAGETABLE: Name = L"Page Tabe";
break;
case MMPFNUSE_PAGEDPOOL: Name = L"Page Pool";
break;
case MMPFNUSE_NONPAGEDPOOL: Name = L"NonPaged Pool";
break;
case MMPFNUSE_SYSTEMPTE: Name = L"System PTE";
break;
case MMPFNUSE_SESSIONPRIVATE: Name = L"Session Private";
break;
case MMPFNUSE_METAFILE: Name = L"Metafile";
break;
case MMPFNUSE_AWEPAGE: Name = L"AWE";
break;
case MMPFNUSE_DRIVERLOCKPAGE: Name = L"DriverLocked";
break;
case MMPFNUSE_KERNELSTACK: Name = L"KernelStack";
break;
default:
swprintf(sz, L"[%x]", n);
Name = sz;
}
StrFormatKBSize(u * sbi.dwPageSize, kb, RTL_NUMBER_OF(kb));
DbgPrint("%16S %S\n", Name, kb);
} while (n--);
}
}
for self system i got
0x0000000000001000 0x0000000000058000 348 KB
0x0000000000059000 0x000000000009f000 280 KB
0x0000000000100000 0x000000008122c000 2,114,736 KB
0x000000008122e000 0x000000008a2d1000 148,108 KB
0x000000008a60a000 0x000000008a772000 1,440 KB
0x000000008b3ff000 0x000000008b400000 4 KB
0x0000000100000000 0x000000046f000000 14,401,536 KB
-------------
TotalSize: 16,666,452 KB
KernelStack 24,400 KB
DriverLocked 13,768 KB
AWE 0 KB
Metafile 667,932 KB
Session Private 24,048 KB
System PTE 50,332 KB
NonPaged Pool 323,104 KB
Page Pool 314,032 KB
Page Tabe 69,020 KB
Shareable 243,288 KB
Mapped File 4,391,092 KB
Process Private 10,545,436 KB

Related

i.MX8 mini GPT implementation issue

I'm trying to use GPT to measuring frequency on a gpio. After some research on the google and Linux's documentation, unfortunately I couldn't see any compatible GPT driver in kernel. I found a patch on google and applied it. But I have a getting clock error now. There is a function which It gets the clock but it's never executing.
P.S : I prepared a platform driver to use exported functions (e.g. mxc_request_input_capture) in timer-imx-gpt.c.
My dts nodes
/*These nodes are child node if aips1*/
gpt1: gpt#302d0000 {
compatible = "fsl,imx8mm-gpt";
reg = <0x302d0000 0x10000>;
interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk IMX8MM_CLK_GPT1>,
<&clk IMX8MM_CLK_GPT1_ROOT>,
<&clk IMX8MM_CLK_GPT_3M>;
clock-names = "ipg", "per", "osc_per";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_gpt_input_capture0>;
status = "okay";
};
iomuxc: pinctrl#30330000 {
compatible = "fsl,imx8mm-iomuxc";
reg = <0x30330000 0x10000>;
pinctrl_gpt_input_capture0: gptinputcapture0grp {
fsl,pins = <
MX8MM_IOMUXC_SAI3_RXFS_GPT1_CAPTURE1 0xd6 /*0x00000000*/
>;
};
};
request gpt input capture func (in timer-imx-gpt.c)
int mxc_request_input_capture(unsigned int chan, mxc_icap_handler_t handler,
unsigned long capflags, void *dev_id)
{
struct imx_timer *imxtm;
struct icap_channel *ic;
unsigned long flags;
u64 start_cycles;
int ret = 0;
u32 mode;
/* we only care about rising and falling flags */
capflags &= (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING);
if (chan > 1 || !handler || !capflags)
return -EINVAL;
printk("mxc_request_input_capture 1\n");
ic = &icap_channel_arr[chan];
imxtm = ic->imxtm;
printk("mxc_request_input_capture 2\n");
if (!imxtm->gpt->gpt_ic_enable)
return -ENODEV; //THIS ERROR CODE RETURN
printk("mxc_request_input_capture 3\n");
spin_lock_irqsave(&icap_lock, flags);
if (ic->handler) {
ret = -EBUSY;
goto out;
}
printk("mxc_request_input_capture 4\n");
ic->handler = handler;
ic->dev_id = dev_id;
switch (capflags) {
case IRQF_TRIGGER_RISING:
mode = V2_IM_RISING;
break;
case IRQF_TRIGGER_FALLING:
mode = V2_IM_FALLING;
break;
default:
mode = V2_IM_BOTH;
break;
}
printk("mxc_request_input_capture 4\n");
/* ack any pending input capture interrupt before enabling */
imxtm->gpt->gpt_ic_irq_acknowledge(ic);
/*
* initialize the cyclecounter. The input capture is capturing
* from the mxc clocksource, so it has the same mask/shift/mult.
*/
memset(&ic->cc, 0, sizeof(ic->cc));
ic->cc.read = gpt_ic_read;
ic->cc.mask = clocksource_mxc.mask;
ic->cc.shift = clocksource_mxc.shift;
ic->cc.mult = clocksource_mxc.mult;
printk("mxc_request_input_capture 5\n");
/* initialize a timecounter for the input capture */
start_cycles = mxc_read_sched_clock();
timecounter_init(&ic->tc, &ic->cc, ktime_get_ns());
printk("mxc_request_input_capture 6\n");
/*
* timecounter_init() read the last captured timer count, but
* that's not the start cycle counter, so update it with the
* real start cycles.
*/
ic->tc.cycle_last = start_cycles;
imxtm->gpt->gpt_ic_enable(ic, mode);
imxtm->gpt->gpt_ic_irq_enable(ic);
printk("mxc_request_input_capture 7\n");
out:
spin_unlock_irqrestore(&icap_lock, flags);
printk("mxc_request_input_capture 8\n");
return ret;
}
EXPORT_SYMBOL_GPL(mxc_request_input_capture);
I realized that imxtm->gpt->gpt_ic_enable variable seems NULL. imxtm structure gets filled in the end of static int __init _mxc_timer_init function. But the function returns error before filling the struct. The error is happening checking the clock. The function which related to getting clock is mxc_timer_init_dt but it never executes.
log:
root:~# dmesg | grep gpt
[ 0.000174] gpt imx6dl_timer_init_dt HEAD
[ 0.000240] gpt _mxc_timer_init
[ 0.000244] gpt imxtm->type 3
[ 0.000249] gpt imxtm->type GPT_TYPE_IMX6DL
[ 0.000252] imx-gpt is NOT null
[ 0.000260] gpt GPT_TYPE_IMX6DL 3
[ 0.000263] gpt mxc_timer_init_dt error -517
[ 16.837810] mxc-timer 302d0000.gpt: GPT Timer Probe Function head
[ 16.843920] mxc-timer 302d0000.gpt: GPT Timer Probe Function end
It start with executing imx6dl_timer_init_dt. mxc_timer_init_dt function must be execute after imx6dl_timer_init_dt to get the clock but it is not executing. Due to failing on getting clock, I am not able to use the gpt module.
some parts of timer-imx-gpt.c
static int __init _mxc_timer_init(struct imx_timer *imxtm)
{
struct icap_channel *ic;
int i, ret;
printk(KERN_INFO "gpt _mxc_timer_init\n");
printk(KERN_INFO "gpt imxtm->type %d \n", imxtm->type);
switch (imxtm->type) {
case GPT_TYPE_IMX1:
imxtm->gpt = &imx1_gpt_data;
printk(KERN_INFO "gpt imxtm->type GPT_TYPE_IMX1 \n");
break;
case GPT_TYPE_IMX21:
imxtm->gpt = &imx21_gpt_data;
printk(KERN_INFO "gpt imxtm->type GPT_TYPE_IMX21 \n");
break;
case GPT_TYPE_IMX31:
imxtm->gpt = &imx31_gpt_data;
printk(KERN_INFO "gpt imxtm->type GPT_TYPE_IMX31 \n");
break;
case GPT_TYPE_IMX6DL:
imxtm->gpt = &imx6dl_gpt_data;
printk(KERN_INFO "gpt imxtm->type GPT_TYPE_IMX6DL \n");
break;
default:
printk(KERN_INFO "gpt imxtm->type DEFAULT \n");
return -EINVAL;
}
imxtm->gpt = &imx6dl_gpt_data;
if(!imxtm->gpt)
printk(KERN_INFO "imx-gpt is null");
printk(KERN_INFO "imx-gpt is NOT null");
if (IS_ERR(imxtm->clk_per)) {
pr_err("i.MX timer: unable to get clk\n"); //I SAW THIS LOG IN LINUX LOGS
return PTR_ERR(imxtm->clk_per); //Function return error at this line
}
printk(KERN_INFO "gpt clk_per success\n");
if (!IS_ERR(imxtm->clk_ipg))
clk_prepare_enable(imxtm->clk_ipg);
printk(KERN_INFO "gpt clk_ipg success\n");
clk_prepare_enable(imxtm->clk_per);
printk(KERN_INFO "gpt clk_prepare_enable\n");
/*
* Initialise to a known state (all timers off, and timing reset)
*/
writel_relaxed(0, imxtm->base + MXC_TCTL);
writel_relaxed(0, imxtm->base + MXC_TPRER); /* see datasheet note */
imxtm->gpt->gpt_oc_setup_tctl(imxtm);
/* init and register the timer to the framework */
ret = mxc_clocksource_init(imxtm);
if (ret)
return ret;
ret = mxc_clockevent_init(imxtm);
if (ret)
return ret;
/*Filling the imx structure. But never reach here*/
for (i = 0; i < 2; i++) {
ic = &icap_channel_arr[i];
ic->imxtm = imxtm;
}
printk(KERN_INFO, "_mxc_timer_init RETURN SUCCESS\n");
return 0;
}
void __init mxc_timer_init(unsigned long pbase, int irq, enum imx_gpt_type type)
{
struct imx_timer *imxtm;
printk(KERN_INFO, "gpt mxc_timer_init HEAD\n");
imxtm = kzalloc(sizeof(*imxtm), GFP_KERNEL);
BUG_ON(!imxtm);
imxtm->clk_per = clk_get_sys("imx-gpt.0", "per");
imxtm->clk_ipg = clk_get_sys("imx-gpt.0", "ipg");
imxtm->base = ioremap(pbase, SZ_4K);
BUG_ON(!imxtm->base);
imxtm->type = type;
imxtm->irq = irq;
_mxc_timer_init(imxtm);
}
/*
* a platform driver is needed in order to acquire pinmux
* for input capture pins. The probe call is also useful
* for setting up the input capture channel structures.
*/
static int mxc_timer_probe(struct platform_device *pdev)
{
struct icap_channel *ic;
int i;
dev_info(&pdev->dev, "GPT Timer Probe Function head\n");
/* setup the input capture channels */
for (i = 0; i < 2; i++) {
ic = &icap_channel_arr[i];
ic->chan = i;
if (i == 0) {
ic->cnt_reg = V2_TCAP1;
ic->irqen_bit = V2_IR_IF1;
ic->status_bit = V2_TSTAT_IF1;
ic->mode_bit = V2_TCTL_IM1_BIT;
} else {
ic->cnt_reg = V2_TCAP2;
ic->irqen_bit = V2_IR_IF2;
ic->status_bit = V2_TSTAT_IF2;
ic->mode_bit = V2_TCTL_IM2_BIT;
}
}
dev_info(&pdev->dev, "GPT Timer Probe Function end\n");
return 0;
}
static int mxc_timer_remove(struct platform_device *pdev)
{
return 0;
}
static const struct of_device_id timer_of_match[] = {
{ .compatible = "fsl,imx1-gpt" },
{ .compatible = "fsl,imx21-gpt" },
{ .compatible = "fsl,imx27-gpt" },
{ .compatible = "fsl,imx31-gpt" },
{ .compatible = "fsl,imx25-gpt" },
{ .compatible = "fsl,imx50-gpt" },
{ .compatible = "fsl,imx51-gpt" },
{ .compatible = "fsl,imx53-gpt" },
{ .compatible = "fsl,imx6q-gpt" },
{ .compatible = "fsl,imx6dl-gpt" },
{ .compatible = "fsl,imx6sl-gpt" },
{ .compatible = "fsl,imx6sx-gpt" },
{ .compatible = "fsl,imx8mm-gpt" },
{ },
};
MODULE_DEVICE_TABLE(of, timer_of_match);
static struct platform_driver mxc_timer_pdrv = {
.probe = mxc_timer_probe,
.remove = mxc_timer_remove,
.driver = {
.name = "mxc-timer",
.owner = THIS_MODULE,
.of_match_table = timer_of_match,
},
};
module_platform_driver(mxc_timer_pdrv);
static int __init mxc_timer_init_dt(struct device_node *np, enum imx_gpt_type type)
{
struct imx_timer *imxtm;
static int initialized;
int ret;
printk(KERN_INFO, "gpt mxc_timer_init_dt head\n");
/* Support one instance only */
if (initialized)
return 0;
imxtm = kzalloc(sizeof(*imxtm), GFP_KERNEL);
if (!imxtm)
return -ENOMEM;
imxtm->base = of_iomap(np, 0);
if (!imxtm->base)
return -ENXIO;
imxtm->irq = irq_of_parse_and_map(np, 0);
if (imxtm->irq <= 0)
return -EINVAL;
imxtm->clk_ipg = of_clk_get_by_name(np, "ipg");
/* Try osc_per first, and fall back to per otherwise */
imxtm->clk_per = of_clk_get_by_name(np, "osc_per");
if (IS_ERR(imxtm->clk_per))
imxtm->clk_per = of_clk_get_by_name(np, "per");
imxtm->type = type;
printk(KERN_INFO, "gpt mxc_timer_init_dt line 883\n");
ret = _mxc_timer_init(imxtm);
if (ret)
return ret;
initialized = 1;
printk(KERN_INFO, "gpt mxc_timer_init_dt end\n");
return 0;
}
static int __init imx1_timer_init_dt(struct device_node *np)
{
return mxc_timer_init_dt(np, GPT_TYPE_IMX1);
}
static int __init imx21_timer_init_dt(struct device_node *np)
{
return mxc_timer_init_dt(np, GPT_TYPE_IMX21);
}
static int __init imx31_timer_init_dt(struct device_node *np)
{
enum imx_gpt_type type = GPT_TYPE_IMX31;
printk(KERN_INFO "gpt imx31_timer_init_dt HEAD");
/*
* We were using the same compatible string for i.MX6Q/D and i.MX6DL/S
* GPT device, while they actually have different programming model.
* This is a workaround to keep the existing i.MX6DL/S DTBs continue
* working with the new kernel.
*/
if (of_machine_is_compatible("fsl,imx6dl"))
type = GPT_TYPE_IMX6DL;
return mxc_timer_init_dt(np, type);
}
static int __init imx6dl_timer_init_dt(struct device_node *np)
{
printk(KERN_INFO "gpt imx6dl_timer_init_dt HEAD");
return mxc_timer_init_dt(np, GPT_TYPE_IMX6DL); //This function must execute to get clock
}
TIMER_OF_DECLARE(imx1_timer, "fsl,imx1-gpt", imx1_timer_init_dt);
TIMER_OF_DECLARE(imx21_timer, "fsl,imx21-gpt", imx21_timer_init_dt);
TIMER_OF_DECLARE(imx27_timer, "fsl,imx27-gpt", imx21_timer_init_dt);
TIMER_OF_DECLARE(imx31_timer, "fsl,imx31-gpt", imx31_timer_init_dt);
TIMER_OF_DECLARE(imx25_timer, "fsl,imx25-gpt", imx31_timer_init_dt);
TIMER_OF_DECLARE(imx50_timer, "fsl,imx50-gpt", imx31_timer_init_dt);
TIMER_OF_DECLARE(imx51_timer, "fsl,imx51-gpt", imx31_timer_init_dt);
TIMER_OF_DECLARE(imx53_timer, "fsl,imx53-gpt", imx31_timer_init_dt);
TIMER_OF_DECLARE(imx6q_timer, "fsl,imx6q-gpt", imx31_timer_init_dt);
TIMER_OF_DECLARE(imx6dl_timer, "fsl,imx6dl-gpt", imx6dl_timer_init_dt);
TIMER_OF_DECLARE(imx6sl_timer, "fsl,imx6sl-gpt", imx6dl_timer_init_dt);
TIMER_OF_DECLARE(imx6sx_timer, "fsl,imx6sx-gpt", imx6dl_timer_init_dt);
TIMER_OF_DECLARE(imx8mm_timer, "fsl,imx8mm-gpt", imx6dl_timer_init_dt); //This line added after applying patch
I will be very grateful for your help

Where does Visual Studio get the hash for my DLL for looking up symbols?

I'm setting up our private symbol server. Everything works great. Observe the following Resharper log when I debug into one of our Nuget packages using symbol server:
Searching for 'ClassLibrary1.Class1' type sources in C:\SNIPPED\SymbolCache\ClassLibrary1.pdb\91180103b9def6ca85f41230aaf9a4611\ClassLibrary1.pdb
Downloader: https ://LOCAL_SYMBOL_SVR/app/sources/builds/id-1641/sources/files/ClassLibrary1/Class1.cs -> ok, 268 bytes
See the hash, 91180103b9def6ca85f41230aaf9a4611? Notice that it is 33 digits.
I figured it might be stored in a PE header, but dumpbin.exe /all DLL doesn't contain the hash in its output.
Where does that hash come from? Is it stored within the DLL somewhere? If so, how and where is it stored?
if PE build with debug information - must exist IMAGE_DEBUG_DIRECTORY in it with IMAGE_DEBUG_TYPE_CODEVIEW. so first debugger search for array of IMAGE_DEBUG_DIRECTORY elements (it can be multiple). this array located at IMAGE_DIRECTORY_ENTRY_DEBUG data directory. for IMAGE_DEBUG_TYPE_CODEVIEW debug info now locate in format RSDS
struct RSDSI // RSDS debug info
{
DWORD dwSig; // RSDSI
GUID guidSig;
DWORD age;
char szPdb[];
};
the what you called "hash" this is really not hash formated from guidSig and age as %08X%04X%04X%02X%02X%02X%02X%02X%02X%02X%02X%x
the dwSig must equal to 'SDSR' and szPdb stored as utf8 string
code example:
ULONG FormatPdbPath(PWSTR* ppdbPath, PCWSTR SymbolsPath, PCSTR PdbFileName, LPGUID Signature, DWORD Age)
{
ULONG UTF8StringByteCount = (ULONG)strlen(PdbFileName) + 1;
ULONG UnicodeStringLen = MultiByteToWideChar(CP_UTF8, 0, PdbFileName, UTF8StringByteCount, 0, 0);
if (!UnicodeStringLen)
{
return ERROR_GEN_FAILURE;
}
if (UnicodeStringLen >= MAXSHORT)
{
return ERROR_FILENAME_EXCED_RANGE;
}
PWSTR FileName = (PWSTR)alloca(UnicodeStringLen * sizeof(WCHAR));
UnicodeStringLen = MultiByteToWideChar(CP_UTF8, 0, PdbFileName, UTF8StringByteCount, FileName, UnicodeStringLen);
if (!UnicodeStringLen)
{
return ERROR_GEN_FAILURE;
}
if (PWSTR pdbPath = new WCHAR[2 * UnicodeStringLen + wcslen(SymbolsPath) + 42])
{
*ppdbPath = pdbPath;
swprintf(pdbPath, L"%s\\%s\\%08X%04X%04X%02X%02X%02X%02X%02X%02X%02X%02X%x\\%s",
SymbolsPath, FileName,
Signature->Data1, Signature->Data2, Signature->Data3,
Signature->Data4[0], Signature->Data4[1], Signature->Data4[2], Signature->Data4[3],
Signature->Data4[4], Signature->Data4[5], Signature->Data4[6], Signature->Data4[7],
Age, FileName);
return NOERROR;
}
return ERROR_NO_SYSTEM_RESOURCES;
}
ULONG FormatPdbPath(PWSTR* ppdbPath, PCWSTR SymbolsPath, PCWSTR lpszName)
{
HMODULE hmod = LoadLibraryExW(lpszName, 0, LOAD_LIBRARY_AS_DATAFILE);
if (!hmod) return GetLastError();
ULONG status = ERROR_NOT_FOUND;
DWORD cb;
BOOLEAN bMappedAsImage = !((DWORD_PTR)hmod & (PAGE_SIZE - 1));
PIMAGE_DEBUG_DIRECTORY pidd = (PIMAGE_DEBUG_DIRECTORY)RtlImageDirectoryEntryToData(hmod, bMappedAsImage, IMAGE_DIRECTORY_ENTRY_DEBUG, &cb);
if (pidd && cb && !(cb % sizeof(IMAGE_DEBUG_DIRECTORY)))
{
do
{
struct RSDSI // RSDS debug info
{
DWORD dwSig; // RSDSI
GUID guidSig;
DWORD age;
char szPdb[];
};
if (pidd->Type == IMAGE_DEBUG_TYPE_CODEVIEW && pidd->SizeOfData > sizeof(RSDSI))
{
if (DWORD PointerToRawData = bMappedAsImage ? pidd->AddressOfRawData : pidd->PointerToRawData)
{
RSDSI* lpcvh = (RSDSI*)RtlOffsetToPointer(PAGE_ALIGN(hmod), PointerToRawData);
if (lpcvh->dwSig == 'SDSR')
{
PCSTR szPdb = lpcvh->szPdb, c = strrchr(szPdb, L'\\');
if (c)
{
szPdb = c + 1;
}
status = FormatPdbPath(ppdbPath, SymbolsPath, szPdb, &lpcvh->guidSig, lpcvh->age);
break;
}
}
}
} while (pidd++, cb -= sizeof(IMAGE_DEBUG_DIRECTORY));
}
FreeLibrary(hmod);
return status;
}
void test(PCWSTR SymbolsPath, PCWSTR lpszName)
{
PWSTR pdbPath;
if (!FormatPdbPath(&pdbPath, SymbolsPath, lpszName))
{
DbgPrint("%S\n", pdbPath);
delete [] pdbPath;
}
}
void test2(PCWSTR SymbolsPath = L"C:\\SNIPPED\\SymbolCache")
{
WCHAR myExe[MAX_PATH];
GetModuleFileNameW(0, myExe, RTL_NUMBER_OF(myExe));
test(SymbolsPath, myExe);
test(SymbolsPath, L"hal.dll");
test(SymbolsPath, L"drivers/ntfs.sys");
test(SymbolsPath, L"kernel32.dll");
}

Is there a fast way to get the number of files on a disk?

I've got a Windows program that scans the contents of a hard disk. I'd like to display a meaningful progress bar while it does so. Is there a quick way to get the total number of files on the disk? The number doesn't have to be exact -- an approximation within 10% or so should do.
this is possible for NTFS volume. one way as Harry Johnston write. also possible some another way, also fast enough by iterating file records:
struct NTFS_RECORD_HEADER
{
enum {
FILE = 'ELIF',
INDX = 'XDNI',
BAAD = 'DAAB',
HOLE = 'ELOH',
CHKD = 'DKHC'
} Type;
USHORT UsaOffset;
USHORT UsaCount;
USN Usn;
};
struct NTFS_FILE_RECORD_HEADER : public NTFS_RECORD_HEADER
{
USHORT SequenceNumber;
USHORT LinkCount;
USHORT AttributesOffset;
USHORT Flags;
ULONG BytesInUse;
ULONG BytesAllocated;
ULONGLONG BaseFileRecord;
USHORT NextAttributeNumber;
enum{
flgInUse = 1, flgDirectory = 2
};
};
ULONG GetFileCount(HANDLE hVolume, PULONG FileCount)
{
NTFS_VOLUME_DATA_BUFFER nvdb;
ULONG cb, BytesReturned;
if (!DeviceIoControl(hVolume, FSCTL_GET_NTFS_VOLUME_DATA, NULL, 0, &nvdb, sizeof(nvdb), &BytesReturned, NULL))
{
return GetLastError();
}
NTFS_FILE_RECORD_INPUT_BUFFER nfrib;
cb = FIELD_OFFSET(NTFS_FILE_RECORD_OUTPUT_BUFFER, FileRecordBuffer[nvdb.BytesPerFileRecordSegment]);
PNTFS_FILE_RECORD_OUTPUT_BUFFER pnfrob = (PNTFS_FILE_RECORD_OUTPUT_BUFFER)alloca(cb);
union {
PVOID FileRecordBuffer;
NTFS_RECORD_HEADER* pnrh;
NTFS_FILE_RECORD_HEADER* pnfrh;
};
FileRecordBuffer = pnfrob->FileRecordBuffer;
// get maximum valid FileReferenceNumber
ULONG a = 0, b = MAXLONG, N;
do
{
nfrib.FileReferenceNumber.QuadPart = N = (a + b) >> 1;
DeviceIoControl(hVolume, FSCTL_GET_NTFS_FILE_RECORD,
&nfrib, sizeof nfrib, pnfrob, cb, &BytesReturned, 0) ? a = N + 1 : b = N;
} while(a < b);
if (!b)
{
return ERROR_GEN_FAILURE;
}
N = 0;
nfrib.FileReferenceNumber.QuadPart = b - 1;
// itterate [0, nfrib.FileReferenceNumber.QuadPart)
do
{
if (DeviceIoControl(hVolume, FSCTL_GET_NTFS_FILE_RECORD,
&nfrib, sizeof nfrib, pnfrob, cb, &BytesReturned, 0))
{
// are really file
if (
pnrh->Type == NTFS_RECORD_HEADER::FILE &&
pnfrh->Flags & NTFS_FILE_RECORD_HEADER::flgInUse &&
!pnfrh->BaseFileRecord
)
{
N++;
}
}
else
{
pnfrob->FileReferenceNumber.QuadPart = nfrib.FileReferenceNumber.QuadPart;
}
} while (0 <= (nfrib.FileReferenceNumber.QuadPart = pnfrob->FileReferenceNumber.QuadPart - 1));
*FileCount = N;
return NOERROR;
}

Trying to get the Active cores,confused with the usage of GetLogicalProcessorInformationEx Winapi

LOGICAL_PROCESSOR_RELATIONSHIP Relationship = {};
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *m_pinfoBase = nullptr;
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *m_pinfoCurrent = nullptr;
DWORD m_cbRemaining = 0;
DWORD cb = 0;
m_pinfoBase =reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *>(LocalAlloc(LMEM_FIXED, cb));
if (!GetLogicalProcessorInformationEx(Relationship,
m_pinfoBase, &cb))
{
printf("Error 1 %d\n",GetLastError());
//return;
}
else
{
printf("ActiveCores:%d\n", m_pinfoBase->Group.GroupInfo->ActiveProcessorCount);
}
I looked up the documentation in, usage details of the api, also I looked up SO and other links and I wrote a small snippet to fetch the Active cores and the api GetLogicalProcessorInformationEx is returning ERROR_INSUFFICIENT_BUFFER. I have two questions,
The proper ActiveProcessorCount in the _PROCESSOR_GROUP_INFO structures gives the count of Active i.e unparked cores?
What's wrong in my code snippe
ActiveProcessorCount: The number of active processors in the group.
2.What's wrong in my code snippet ?
absolute all
code example how work with GetLogicalProcessorInformationEx
void TestLP2()
{
ULONG rcb = 0x100, Size, err;
PVOID buf;
BOOL fOk;
do
{
if (buf = new UCHAR[rcb])
{
fOk = GetLogicalProcessorInformationEx(RelationAll, (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)buf, &rcb);
err = GetLastError();
if (fOk)
{
if (rcb)
{
union {
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX pslpi;
PBYTE pb;
};
pslpi = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)buf;
do
{
DumpLPI(pslpi);
Size = pslpi->Size;
pb += Size;
} while (rcb -= Size);
}
}
delete [] buf;
}
else
{
break;
}
} while (!fOk && err == ERROR_INSUFFICIENT_BUFFER);
}
the implementation of DumpLPI can be next:
void DumpLPI(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX pslpi)
{
union {
PPROCESSOR_RELATIONSHIP Processor;
PNUMA_NODE_RELATIONSHIP NumaNode;
PCACHE_RELATIONSHIP Cache;
PGROUP_RELATIONSHIP Group;
};
Processor = &pslpi->Processor;
switch (pslpi->Relationship)
{
case RelationProcessorPackage:
DbgPrint("RelationProcessorPackage(GroupCount = %u)\n", Processor->GroupCount);
if (WORD GroupCount = Processor->GroupCount)
{
PGROUP_AFFINITY GroupMask = Processor->GroupMask;
do
{
DbgPrint("group<%u> Mask = %08x\n", GroupMask->Group, GroupMask->Mask);
} while (GroupMask++, --GroupCount);
}
break;
case RelationProcessorCore:
DbgPrint("RelationProcessorCore(%x): Mask = %08x\n", Processor->Flags, Processor->GroupMask->Mask);
break;
case RelationGroup:
DbgPrint("RelationGroup(%u/%u)\n", Group->ActiveGroupCount, Group->MaximumGroupCount);
if (WORD ActiveGroupCount = Group->ActiveGroupCount)
{
PPROCESSOR_GROUP_INFO GroupInfo = Group->GroupInfo;
do
{
DbgPrint("<%u/%u %08x>",
GroupInfo->ActiveProcessorCount,
GroupInfo->MaximumProcessorCount,
GroupInfo->ActiveProcessorMask);
} while (GroupInfo++, --ActiveGroupCount);
}
break;
case RelationCache:
DbgPrint("Cache L%u (%x, %x) %x\n", Cache->Level, Cache->LineSize, Cache->CacheSize, Cache->Type);
break;
case RelationNumaNode:
DbgPrint("NumaNode<%u> (group = %u, mask = %08x)\n", NumaNode->NodeNumber, NumaNode->GroupMask.Group, NumaNode->GroupMask.Mask);
break;
default:
DbgPrint("unknown Relationship=%x\n", pslpi->Relationship);
}
}
example of output:
RelationProcessorPackage(GroupCount = 1)
group<0> Mask = 0000000f
RelationProcessorCore(1): Mask = 00000003
Cache L1 (40, 8000) 2
Cache L1 (40, 8000) 1
Cache L2 (40, 40000) 0
Cache L3 (40, 300000) 0
RelationProcessorCore(1): Mask = 0000000c
Cache L1 (40, 8000) 2
Cache L1 (40, 8000) 1
Cache L2 (40, 40000) 0
NumaNode<0> (group = 0, mask = 0000000f)
RelationGroup(1/1)
<4/4 0000000f>

Resolve managed and native stack trace - which API to use?

This is continuation to my previous question - phase 2 so to say.
First question was here: Fast capture stack trace on windows / 64-bit / mixed mode
Now I have resolved a huge amount of stack traces and now wondering how to resolve symbol information of managed stack frames.
For native C++ side it's relatively simple -
First you specify which process from where to take symbols:
HANDLE g_hProcess = GetCurrentProcess();
Where you can replace process in run-time using code snipet like this:
g_hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, g_processId);
b = (g_hProcess != NULL );
if( !b )
errInfo.AppendFormat(_T("Process id '%08X' is not running anymore."), g_processId );
else
InitSymbolLoad();
And initialize symbol loading:
void InitSymbolLoad()
{
SymInitialize(g_hProcess, NULL, TRUE);
DWORD dwFlags = SymGetOptions();
SymSetOptions(SymGetOptions() | SYMOPT_DEFERRED_LOADS | SYMOPT_NO_IMAGE_SEARCH);
}
And after that resolve native symbol , somehow like this:
extern HANDLE g_hProcess;
void StackFrame::Resolve()
{
struct {
union
{
SYMBOL_INFO symbol;
char buf[sizeof(SYMBOL_INFO) + 1024];
}u;
}ImageSymbol = { 0 };
HANDLE hProcess = g_hProcess;
DWORD64 offsetFromSymbol = 0;
ImageSymbol.u.symbol.SizeOfStruct = sizeof(SYMBOL_INFO);
ImageSymbol.u.symbol.Name[0] = 0;
ImageSymbol.u.symbol.MaxNameLen = sizeof(ImageSymbol) - sizeof(SYMBOL_INFO);
SYMBOL_INFO* pSymInfo = &ImageSymbol.u.symbol;
// Get file / line of source code.
IMAGEHLP_LINE64 lineStr = { 0 };
lineStr.SizeOfStruct = sizeof(IMAGEHLP_LINE64);
function.clear();
if( SymGetLineFromAddr64(hProcess, (DWORD64)ip, (DWORD*)&offsetFromSymbol, &lineStr) )
{
function = lineStr.FileName;
function += "(";
function += std::to_string((_ULonglong) lineStr.LineNumber).c_str();
function += "): ";
}
// Successor of SymGetSymFromAddr64.
if( SymFromAddr(hProcess, (DWORD64)ip, &offsetFromSymbol, pSymInfo) )
function += ImageSymbol.u.symbol.Name;
}
This looks like working.
But now also managed stack frames.
There are two interfaces which I've located:
IDebugClient / GetNameByOffset
Mentioned in:
http://www.codeproject.com/Articles/371137/A-Mixed-Mode-Stackwalk-with-the-IDebugClient-Inter
(*) (Includes sample code)
http://blog.steveniemitz.com/building-a-mixed-mode-stack-walker-part-1/
Used by:
https://github.com/okigan/CrashInsight (Code not touched for 4 years)
Mixed mode stackwalk article provides good example.
IXCLRDATAProcess / GetRuntimeNameByAddress
Mentioned also in two links above.
Used by process hacker (GPL license, C style)
Implementation seems to reside in here:
https://github.com/dotnet/coreclr/blob/master/src/debug/daccess/daccess.cpp
(Based on commits this code is quite alive)
ICorProfiler / ???
Mentioned at the end of (*) article.
Approach 1 seems to be quite old fashioned, also article (*) mentions some problems around it.
Approach 3 will probably require in-depth analysis of profiling API's.
There is also one mention I have found about these API's - in here:
https://naughter.wordpress.com/2015/05/24/changes-in-the-windows-10-sdk-compared-to-windows-8-1-part-two/
· cor.h, cordebug.h/idl, CorError.h, CorHdr.h, corhlpr.h,
corprof.h/idl, corpub.h/idl & corsym.h/idl: All of these header files
have been removed. They are all the native mode COM interface to .NET.
This sentence I don't fully understand. Are those interfaces dead or replaced or what happened to them ?
So I guess based on my brief analysis approach 2 is only good / alive API interface which is worth of using ? Have you came across any problems related to those api's.
After walking through huge amount of code samples and interfaces, I've understood that there aren't any simple to use API interface. Code and API's developed for native C++ works only with native C++, and code and API's developed for managed code works only with managed code.
There is additionally problem of resolving stack trace afterwards might not work. You see - developer can generate code dynamically on fly using Jit engine / IL Generator, and dispose it as well - so after you have "void*" / instruction address - you should resolve symbolic information right away, not afterwards. But I'll leave this for time being, will assume that developer is not too fancy coder and not generating and disposing new code all the times, and FreeLibrary will not be called without need. (May be I can address this later on if I'll hook FreeLibrary / Jit components.)
Resolving function name was quite trivial, through IXCLRDataProcess with little bit of magic and luck - I was able to get function names, however - I want to expand it deeper - into exact source code path and source code line where code were executing, and this turned to be quite complex functionality to reach.
Finally I've hit upon source code where such thing were performed - and it was done here:
https://github.com/dotnet/coreclr/blob/master/src/ToolBox/SOS/Strike/util.cpp
GetLineByOffset is function name in that file.
I've analyzed, retuned and made my own solution from that source code, which I'm now attaching here now:
Updated code can be found from here:
https://sourceforge.net/projects/diagnostic/
But here is just a snapshot of same code taken at some point of time:
ResolveStackM.h:
#pragma once
#include <afx.h>
#pragma warning (disable: 4091) //dbghelp.h(1544): warning C4091: 'typedef ': ignored on left of '' when no variable is declared
#include <cor.h> //xclrdata.h requires this
#include "xclrdata.h" //IXCLRDataProcess
#include <atlbase.h> //CComPtr
#include <afxstr.h> //CString
#include <crosscomp.h> //TCONTEXT
#include <Dbgeng.h> //IDebugClient
#pragma warning (default: 4091)
class ResoveStackM
{
public:
ResoveStackM();
~ResoveStackM();
void Close(void);
bool InitSymbolResolver(HANDLE hProcess, CString& lastError);
bool GetMethodName(void* ip, CStringA& methodName);
bool GetManagedFileLineInfo(void* ip, CStringA& lineInfo);
HMODULE mscordacwks_dll;
CComPtr<IXCLRDataProcess> clrDataProcess;
CComPtr<ICLRDataTarget> target;
CComPtr<IDebugClient> debugClient;
CComQIPtr<IDebugControl> debugControl;
CComQIPtr<IDebugSymbols> debugSymbols;
CComQIPtr<IDebugSymbols3> debugSymbols3;
};
//
// Typically applications don't need more than one instance of this. If you do, use your own copies.
//
extern ResoveStackM g_managedStackResolver;
ResolveStackM.cpp:
#include "ResolveStackM.h"
#include <Psapi.h> //EnumProcessModules
#include <string> //to_string
#pragma comment( lib, "dbgeng.lib" )
class CLRDataTarget : public ICLRDataTarget
{
public:
ULONG refCount;
bool bIsWow64;
HANDLE hProcess;
CLRDataTarget( HANDLE _hProcess, bool _bIsWow64 ) :
refCount(1),
bIsWow64(_bIsWow64),
hProcess(_hProcess)
{
}
HRESULT STDMETHODCALLTYPE QueryInterface( REFIID riid, PVOID* ppvObject)
{
if ( IsEqualIID(riid, IID_IUnknown) || IsEqualIID(riid, __uuidof(ICLRDataTarget)) )
{
AddRef();
*ppvObject = this;
return S_OK;
}
*ppvObject = NULL;
return E_NOINTERFACE;
}
ULONG STDMETHODCALLTYPE AddRef( void)
{
return ++refCount;
}
ULONG STDMETHODCALLTYPE Release( void)
{
refCount--;
if( refCount == 0 )
delete this;
return refCount;
}
virtual HRESULT STDMETHODCALLTYPE GetMachineType( ULONG32 *machineType )
{
#ifdef _WIN64
if (!bIsWow64)
*machineType = IMAGE_FILE_MACHINE_AMD64;
else
*machineType = IMAGE_FILE_MACHINE_I386;
#else
*machineType = IMAGE_FILE_MACHINE_I386;
#endif
return S_OK;
}
virtual HRESULT STDMETHODCALLTYPE GetPointerSize( ULONG32* pointerSize )
{
#ifdef _WIN64
if (!bIsWow64)
#endif
*pointerSize = sizeof(PVOID);
#ifdef _WIN64
else
*pointerSize = sizeof(ULONG);
#endif
return S_OK;
}
virtual HRESULT STDMETHODCALLTYPE GetImageBase( LPCWSTR imagePath, CLRDATA_ADDRESS *baseAddress )
{
HMODULE dlls[1024] = { 0 };
DWORD nItems = 0;
wchar_t path[ MAX_PATH ];
DWORD whatToList = LIST_MODULES_ALL;
if( bIsWow64 )
whatToList = LIST_MODULES_32BIT;
if( !EnumProcessModulesEx( hProcess, dlls, sizeof(dlls), &nItems, whatToList ) )
{
DWORD err = GetLastError();
return HRESULT_FROM_WIN32(err);
}
nItems /= sizeof(HMODULE);
for( unsigned int i = 0; i < nItems; i++ )
{
path[0] = 0;
if( GetModuleFileNameEx(hProcess, dlls[i], path, sizeof(path) / sizeof(path[0])) )
{
wchar_t* pDll = wcsrchr( path, L'\\');
if (pDll) pDll++;
if (_wcsicmp(imagePath, path) == 0 || _wcsicmp(imagePath, pDll) == 0)
{
*baseAddress = (CLRDATA_ADDRESS) dlls[i];
return S_OK;
}
}
}
return E_FAIL;
}
virtual HRESULT STDMETHODCALLTYPE ReadVirtual( CLRDATA_ADDRESS address, BYTE *buffer, ULONG32 bytesRequested, ULONG32 *bytesRead )
{
SIZE_T readed;
if( !ReadProcessMemory(hProcess, (void*)address, buffer, bytesRequested, &readed) )
return HRESULT_FROM_WIN32( GetLastError() );
*bytesRead = (ULONG32) readed;
return S_OK;
}
virtual HRESULT STDMETHODCALLTYPE WriteVirtual( CLRDATA_ADDRESS address, BYTE *buffer, ULONG32 bytesRequested, ULONG32 *bytesWritten )
{
return E_NOTIMPL;
}
virtual HRESULT STDMETHODCALLTYPE GetTLSValue( ULONG32 threadID, ULONG32 index, CLRDATA_ADDRESS *value )
{
return E_NOTIMPL;
}
virtual HRESULT STDMETHODCALLTYPE SetTLSValue( ULONG32 threadID, ULONG32 index, CLRDATA_ADDRESS value )
{
return E_NOTIMPL;
}
virtual HRESULT STDMETHODCALLTYPE GetCurrentThreadID( ULONG32 *threadID )
{
return E_NOTIMPL;
}
virtual HRESULT STDMETHODCALLTYPE GetThreadContext( ULONG32 threadID, ULONG32 contextFlags, ULONG32 contextSize, BYTE *context )
{
return E_NOTIMPL;
}
virtual HRESULT STDMETHODCALLTYPE SetThreadContext( ULONG32 threadID, ULONG32 contextSize, BYTE *context)
{
return E_NOTIMPL;
}
virtual HRESULT STDMETHODCALLTYPE Request( ULONG32 reqCode, ULONG32 inBufferSize, BYTE *inBuffer, ULONG32 outBufferSize, BYTE *outBuffer)
{
return E_NOTIMPL;
}
}; //CLRDataTarget
ResoveStackM::ResoveStackM() :
mscordacwks_dll(0)
{
}
ResoveStackM::~ResoveStackM()
{
Close();
}
void ResoveStackM::Close( void )
{
clrDataProcess.Release();
target.Release();
debugClient.Release();
if( mscordacwks_dll != 0 )
{
FreeLibrary(mscordacwks_dll);
mscordacwks_dll = 0;
}
}
bool ResoveStackM::InitSymbolResolver(HANDLE hProcess, CString& lastError)
{
wchar_t path[ MAX_PATH ] = { 0 };
// According to process hacker - mscoree.dll must be loaded before loading mscordacwks.dll.
// It's enough if base application is managed.
if( GetWindowsDirectoryW(path, sizeof(path)/sizeof(wchar_t) ) == 0 )
return false; //Unlikely to fail.
#ifdef _WIN64
wcscat(path, L"\\Microsoft.NET\\Framework64\\v4.0.30319\\mscordacwks.dll");
#else
wcscat(path, L"\\Microsoft.NET\\Framework\\v4.0.30319\\mscordacwks.dll");
#endif
mscordacwks_dll = LoadLibraryW(path);
PFN_CLRDataCreateInstance pCLRCreateInstance = 0;
if( mscordacwks_dll != 0 )
pCLRCreateInstance = (PFN_CLRDataCreateInstance) GetProcAddress(mscordacwks_dll, "CLRDataCreateInstance");
if( mscordacwks_dll == 0 || pCLRCreateInstance == 0)
{
lastError.Format(L"Required dll mscordacwks.dll from .NET4 installation was not found (%s)", path);
Close();
return false;
}
BOOL isWow64 = FALSE;
IsWow64Process(hProcess, &isWow64);
target.Attach( new CLRDataTarget(hProcess, isWow64 != FALSE) );
HRESULT hr = pCLRCreateInstance(__uuidof(IXCLRDataProcess), target, (void**)&clrDataProcess );
if( FAILED(hr) )
{
lastError.Format(L"Failed to initialize mscordacwks.dll for symbol resolving (%08X)", hr);
Close();
return false;
}
hr = DebugCreate(__uuidof(IDebugClient), (void**)&debugClient);
if (FAILED(hr))
{
lastError.Format(_T("Could retrieve symbolic debug information using dbgeng.dll (Error code: 0x%08X)"), hr);
return false;
}
DWORD processId = GetProcessId(hProcess);
const ULONG64 LOCAL_SERVER = 0;
int flags = DEBUG_ATTACH_NONINVASIVE | DEBUG_ATTACH_NONINVASIVE_NO_SUSPEND;
hr = debugClient->AttachProcess(LOCAL_SERVER, processId, flags);
if (hr != S_OK)
{
lastError.Format(_T("Could attach to process 0x%X (Error code: 0x%08X)"), processId, hr);
Close();
return false;
}
debugControl = debugClient;
hr = debugControl->SetExecutionStatus(DEBUG_STATUS_GO);
if ((hr = debugControl->WaitForEvent(DEBUG_WAIT_DEFAULT, INFINITE)) != S_OK)
{
return false;
}
debugSymbols3 = debugClient;
debugSymbols = debugClient;
// if debugSymbols3 == NULL - GetManagedFileLineInfo will not work
return true;
} //Init
struct ImageInfo
{
ULONG64 modBase;
};
// Based on a native offset, passed in the first argument this function
// identifies the corresponding source file name and line number.
bool ResoveStackM::GetManagedFileLineInfo( void* ip, CStringA& lineInfo )
{
ULONG lineN = 0;
char path[MAX_PATH];
ULONG64 dispacement = 0;
CComPtr<IXCLRDataMethodInstance> method;
if (!debugSymbols || !debugSymbols3)
return false;
// Get managed method by address
CLRDATA_ENUM methEnum;
HRESULT hr = clrDataProcess->StartEnumMethodInstancesByAddress((ULONG64)ip, NULL, &methEnum);
if( hr == S_OK )
{
hr = clrDataProcess->EnumMethodInstanceByAddress(&methEnum, &method);
clrDataProcess->EndEnumMethodInstancesByAddress(methEnum);
}
if (!method)
goto lDefaultFallback;
ULONG32 ilOffsets = 0;
hr = method->GetILOffsetsByAddress((CLRDATA_ADDRESS)ip, 1, NULL, &ilOffsets);
switch( (long)ilOffsets )
{
case CLRDATA_IL_OFFSET_NO_MAPPING:
goto lDefaultFallback;
case CLRDATA_IL_OFFSET_PROLOG:
// Treat all of the prologue as part of the first source line.
ilOffsets = 0;
break;
case CLRDATA_IL_OFFSET_EPILOG:
{
// Back up until we find the last real IL offset.
CLRDATA_IL_ADDRESS_MAP mapLocal[16];
CLRDATA_IL_ADDRESS_MAP* map = mapLocal;
ULONG32 count = _countof(mapLocal);
ULONG32 needed = 0;
for( ; ; )
{
hr = method->GetILAddressMap(count, &needed, map);
if ( needed <= count || map != mapLocal)
break;
map = new CLRDATA_IL_ADDRESS_MAP[ needed ];
}
ULONG32 highestOffset = 0;
for (unsigned i = 0; i < needed; i++)
{
long l = (long) map[i].ilOffset;
if (l == CLRDATA_IL_OFFSET_NO_MAPPING || l == CLRDATA_IL_OFFSET_PROLOG || l == CLRDATA_IL_OFFSET_EPILOG )
continue;
if (map[i].ilOffset > highestOffset )
highestOffset = map[i].ilOffset;
} //for
if( map != mapLocal )
delete[] map;
ilOffsets = highestOffset;
}
break;
} //switch
mdMethodDef methodToken;
void* moduleBase = 0;
{
CComPtr<IXCLRDataModule> module;
hr = method->GetTokenAndScope(&methodToken, &module);
if( !module )
goto lDefaultFallback;
//
// Retrieve ImageInfo associated with the IXCLRDataModule instance passed in. First look for NGENed module, second for IL modules.
//
for (int extentType = CLRDATA_MODULE_PREJIT_FILE; extentType >= CLRDATA_MODULE_PE_FILE; extentType--)
{
CLRDATA_ENUM enumExtents;
if (module->StartEnumExtents(&enumExtents) != S_OK )
continue;
CLRDATA_MODULE_EXTENT extent;
while (module->EnumExtent(&enumExtents, &extent) == S_OK)
{
if (extentType != extent.type )
continue;
ULONG startIndex = 0;
ULONG64 modBase = 0;
hr = debugSymbols->GetModuleByOffset((ULONG64) extent.base, 0, &startIndex, &modBase);
if( FAILED(hr) )
continue;
moduleBase = (void*)modBase;
if (moduleBase )
break;
}
module->EndEnumExtents(enumExtents);
if( moduleBase != 0 )
break;
} //for
} //module scope
DEBUG_MODULE_AND_ID id;
DEBUG_SYMBOL_ENTRY symInfo;
hr = debugSymbols3->GetSymbolEntryByToken((ULONG64)moduleBase, methodToken, &id);
if( FAILED(hr) )
goto lDefaultFallback;
hr = debugSymbols3->GetSymbolEntryInformation(&id, &symInfo);
if (FAILED(hr))
goto lDefaultFallback;
char* IlOffset = (char*)symInfo.Offset + ilOffsets;
//
// Source maps for managed code can end up with special 0xFEEFEE markers that
// indicate don't-stop points. Try and filter those out.
//
for (ULONG SkipCount = 64; SkipCount > 0; SkipCount--)
{
hr = debugSymbols3->GetLineByOffset((ULONG64)IlOffset, &lineN, path, sizeof(path), NULL, &dispacement );
if( FAILED( hr ) )
break;
if (lineN == 0xfeefee)
IlOffset++;
else
goto lCollectInfoAndReturn;
}
if( !FAILED(hr) )
// Fall into the regular translation as a last-ditch effort.
ip = IlOffset;
lDefaultFallback:
hr = debugSymbols3->GetLineByOffset((ULONG64) ip, &lineN, path, sizeof(path), NULL, &dispacement);
if( FAILED(hr) )
return false;
lCollectInfoAndReturn:
lineInfo += path;
lineInfo += "(";
lineInfo += std::to_string((_ULonglong) lineN).c_str();
lineInfo += "): ";
return true;
}
bool ResoveStackM::GetMethodName(void* ip, CStringA& symbol)
{
symbol.Empty();
GetManagedFileLineInfo(ip, symbol);
USES_CONVERSION;
CLRDATA_ADDRESS displacement = 0;
ULONG32 len = 0;
wchar_t name[1024];
if (!clrDataProcess )
return false;
HRESULT hr = clrDataProcess->GetRuntimeNameByAddress( (CLRDATA_ADDRESS)ip, 0, sizeof(name) / sizeof(name[0]), &len, name, &displacement );
if( FAILED( hr ) )
return false;
name[ len ] = 0;
symbol += W2A(name);
return true;
} //GetMethodName
ResoveStackM g_managedStackResolver;
So far tested only with some smaller piece of code, only 64-bit (doubt that 32-bit works at all - I don't have call stack determination yet for it).
It's possible that this code contains bugs, but I'll try to haunt them down and fix them.
I harvested so much code that please mark this answer as useful. :-)
Here is an answer from Jan Kotas on this:
From: Jan Kotas <jkotas#microsoft.com>
To: Tarmo Pikaro <tapika#yahoo.com>
Sent: Tuesday, January 12, 2016 5:09 AM
Subject: RE: Fast capture stack trace on windows 64 bit / mixed mode...
Your solution based on IXCLRDATAProcess sounds good to me.
PerfView (https://www.microsoft.com/en-us/download/details.aspx?id=28567) –
that does what you are trying to build as well as a lot of other stuff – is
using IXCLRDATA* as well. You may be interested in
https://github.com/Microsoft/clrmd . It is set of managed wrappers for
IXCLRDATA* that are easier to use than the COM interfaces.
What I have briefly tried out - this requires Visual Studio 2015 / C# 6.0.
Also this technique is unusable. Like .net StackTrace / StackFrame are resolving call stack and symbol information right away - and I need to resolve symbol information afterwards (after stack trace capturing).
Alternative 1 / IDebugClient / GetNameByOffset is not usable for managed stack trace, it can be used for native code only - as for native call stack I have demo code snipet above already. Not sure whether IDebugClient provides something more than SymGetLineFromAddr64 / SymFromAddr does not provide - not sure.

Resources