Related
Disclaimer: I'm not a professional programmer or mathematician and this is my first time encountering the field of optimisation problems. Now that's out of the way so let's get to the problem at hand:
I got several lists, each containing various items and number called 'mandatoryAmount':
listA (mandatoryAmountA, itemA1, itemA2, itemA2, ...)
Each item has certain values (each value is a number >= 0):
itemA1 (M, E, P, C, Al, Ac, D, Ab,S)
I have to choose a certain number of items from each list determined by 'mandatoryAmount'.
Within each list I can choose every item multiple times.
Once I have all of the items from each list, I'll add up the values of each.
For example:
totalM = listA (itemA1 (M) + itemA1 (M) + itemA3 (M)) + listB (itemB1 (M) + itemB2 (M))
The goals are:
-To have certain values (totalAl, totalAc, totalAb, totalS) reach a certain number cap while going over that cap as little as possible. Anything over that cap is wasted.
-To maximize the remaining values with different weightings each
The output should be the best possible selection of items to meet the goals stated above. I imagine the evaluation function to just add up all non-waste values times their respective weightings while subtracting all wasted stats times their respective weightings.
edit:
The total amount of items across all lists should be somewhere between 500 and 1000, the number of lists is around 10 and the mandatoryAmount for each list is between 0 and 14.
Here's some sample code that uses Python 3 and OR-Tools. Let's start by
defining the input representation and a random instance.
import collections
import random
Item = collections.namedtuple("Item", ["M", "E", "P", "C", "Al", "Ac", "D", "Ab", "S"])
List = collections.namedtuple("List", ["mandatoryAmount", "items"])
def RandomItem():
return Item(
random.random(),
random.random(),
random.random(),
random.random(),
random.random(),
random.random(),
random.random(),
random.random(),
random.random(),
)
lists = [
List(
random.randrange(5, 10), [RandomItem() for j in range(random.randrange(5, 10))]
)
for i in range(random.randrange(5, 10))
]
Time to formulate the optimization as a mixed-integer program. Let's import
the solver library and initialize the solver object.
from ortools.linear_solver import pywraplp
solver = pywraplp.Solver.CreateSolver("solver", "SCIP")
Make constraints for the totals that must reach a certain cap.
AlCap = random.random()
totalAl = solver.Constraint(AlCap, solver.infinity())
AcCap = random.random()
totalAc = solver.Constraint(AcCap, solver.infinity())
AbCap = random.random()
totalAb = solver.Constraint(AbCap, solver.infinity())
SCap = random.random()
totalS = solver.Constraint(SCap, solver.infinity())
We want to maximize the other values subject to some weighting.
MWeight = random.random()
EWeight = random.random()
PWeight = random.random()
CWeight = random.random()
DWeight = random.random()
solver.Objective().SetMaximization()
Create variables and fill in the constraints. For each list there is an
equality constraint on the number of items.
associations = []
for list_ in lists:
amount = solver.Constraint(list_.mandatoryAmount, list_.mandatoryAmount)
for item in list_.items:
x = solver.IntVar(0, solver.infinity(), "")
amount.SetCoefficient(x, 1)
totalAl.SetCoefficient(x, item.Al)
totalAc.SetCoefficient(x, item.Ac)
totalAb.SetCoefficient(x, item.Ab)
totalS.SetCoefficient(x, item.S)
solver.Objective().SetCoefficient(
x,
MWeight * item.M
+ EWeight * item.E
+ PWeight * item.P
+ CWeight * item.C
+ DWeight * item.D,
)
associations.append((item, x))
if solver.Solve() != solver.OPTIMAL:
raise RuntimeError
solution = []
for item, x in associations:
solution += [item] * round(x.solution_value())
print(solution)
I think David Eisenstat has the right idea with Integer programming, but let's see if we get some good solutions otherwise and perhaps provide some initial optimization. However, I think that we can just choose all of one item in each list may make this easier to solve that it normally would be. Basically that turns it into more of a Subset Sum problem. Especially with the cap.
There are two possibilities here:
There is no solution, no condition satisfies the requirement.
There is a solution that we need to be optimized.
We really want to try to find a solution first, if we can find one (regardless of the amount of waste), then that's nice.
So let's reframe the problem: We aim to simply minimize waste, but we also need to meet a min requirement. So let's try to get as much waste as possible in ways we need it.
I'm going to propose an algorithm you could use that should work "fairly well" and is polynomial time, though could probably have some optimizations. I'll be using K to mean mandatoryAmount as it's a bit of a customary variable in this situation. Also I'll be using N to mean the number of lists. Lastly, Z to represent the total number of items (across all lists).
Get the list of all items and sort them by the amount of each value they have (first the goal values, then the bonus values). If an item has 100A, 300C, 200B, 400D, 150E and the required are [B, D], then the sort order would look like: [400,200,300,150,100]. Repeat but for one goal value. Using the same example above we would have: [400,300,150,100] for goal: D and [200,300,150,100] for goal B. Create a boolean variable for optimization mode (we start by seeking for a solution, once we find one, we can try to optimize it). Create a counter/hash to contain the unassigned items. An item cannot be unassigned more than K times (to avoid infinite loops). This isn't strictly needed, but could work as an optimization for step 5, as it prioritize goals you actually need.
For each list, keep a counter of the number of assignable slots for each list, set each to K, as well as the number of total assignable slots, and set to K * N. This will be adjusted as needed along the way. You want to be able to quickly O(1) lookup for: a) which list an (sorted) item belongs to, b) how many available slots that item has, and c) How many times has the item been unassigned, d) Find the item is the sorted list.
General Assignment. While there are slots available (total slots), go through the list from highest to lowest order. If the list for that item is available, assign as many slots as possible to that item. Update the assignable and total slots. If result is a valid solution, record it, trip the "optimization mode flag". If slots remain unassigned, revert the previous unassignment (but do not change the assignment count).
Waste Optimization. Find the most wasteful item that can be unassigned (unassigned count < K). Unassign one slot of it. If in optimization mode, do not allow any of the goal values to go below their cap (skip if it would). Update the unassigned count for item. Goto #3, but start just after the wasteful item. If no assignment made, reassign this item until the list has no remaining assignments, but do not update the unassigned count (otherwise we might end up in an invalid state).
Goal value Optimization. Skip if current state is a valid solution. Find the value furthest from it's goal (IE: A/B/C/D/E above) that can be unassigned. Unassign one slot for that item. Update assignment count. Goto step 3, begin search at start of list (unlike Step 4), stop searching the list if you go below the value of this item (not this item itself, as others may have the same value). If no assignment made, reassign this item until the list has no remaining assignments, but do not update the unassigned count (otherwise we might end up in an invalid state).
No Assignments remain. Return current state as "best solution found".
Algorithm should end with the "best" solution that this approach can come up with. Increasing max unassignment counts may improve the solution, decreasing max assignment counts will speed up the algorithm. Algorithm will run until it has maxed out it's assignment counts.
This is a bit of a greedy algorithm, so I'm not sure it's optimal (in that it will always yield the best result) but it may give you some ideas as to how to approach it. It also feels like it should yield fairly good results, as it basically trying to bound the results. Algorithm performance is something like O(Z^2 * K), where K is the mandatoryAmount and Z is the total number of items. Each item is unassigned K items, and potentially each assignment also requires O(Z) checks before it is reassigned.
As an optimization, use a O(log N) or better delete/next operation sorted data structure to store the sorted lists. Doing so it would make it practical to delete items from the assignment lists once the unassignment count reaches K (rendering them no longer assignable) allowing for O(Z * log(Z) * K) performance instead.
Edit:
Hmmm, the above only works within a single list (IE: Item removed can only be added to it's own list, as only that list has room). To avoid this, do step 4 (remove too heavy) then step 5 (remove too light) and then goto step 3 (using step 5's rules for searching, but also disallow adding back the too heavy ones).
So basically we remove the heaviest one then the lightest one then we try to assign something that is as heavy as possible to make up for the lightest one we removed.
My data has large number of sets (few millions). Each of those set size is between few members to several tens of thousands integers. Many of those sets are subsets of larger sets (there are many of those super-sets). I'm trying to assign each subset to it's largest superset.
Please can anyone recommend algorithm for this type of task?
There are many algorithms for generating all possible sub-sets of a set, but this type of approach is time-prohibitive given my data size (e.g. this paper or SO question).
Example of my data-set:
A {1, 2, 3}
B {1, 3}
C {2, 4}
D {2, 4, 9}
E {3, 5}
F {1, 2, 3, 7}
Expected answer: B and A are subset of F (it's not important B is also subset of A); C is a subset of D; E remains unassigned.
Here's an idea that might work:
Build a table that maps number to a sorted list of sets, sorted first by size with largest first, and then, by size, arbitrarily but with some canonical order. (Say, alphabetically by set name.) So in your example, you'd have a table that maps 1 to [F, A, B], 2 to [F, A, D, C], 3 to [F, A, B, E] and so on. This can be implemented to take O(n log n) time where n is the total size of the input.
For each set in the input:
fetch the lists associated with each entry in that set. So for A, you'd get the lists associated with 1, 2, and 3. The total number of selects you'll issue in the runtime of the whole algorithm is O(n), so runtime so far is O(n log n + n) which is still O(n log n).
Now walk down each list simultaneously. If a set is the first entry in all three lists, then it's the largest set that contains the input set. Output that association and continue with the next input list. If not, then discard the smallest item among all the items in the input lists and try again. Implementing this last bit is tricky, but you can store the heads of all lists in a heap and get (IIRC) something like O(n log k) overall runtime where k is the maximum size of any individual set, so you can bound that at O(n log n) in the worst case.
So if I got everything straight, the runtime of the algorithm is overall O(n log n), which seems like probably as good as you're going to get for this problem.
Here is a python implementation of the algorithm:
from collections import defaultdict, deque
import heapq
def LargestSupersets(setlists):
'''Computes, for each item in the input, the largest superset in the same input.
setlists: A list of lists, each of which represents a set of items. Items must be hashable.
'''
# First, build a table that maps each element in any input setlist to a list of records
# of the form (-size of setlist, index of setlist), one for each setlist that contains
# the corresponding element
element_to_entries = defaultdict(list)
for idx, setlist in enumerate(setlists):
entry = (-len(setlist), idx) # cheesy way to make an entry that sorts properly -- largest first
for element in setlist:
element_to_entries[element].append(entry)
# Within each entry, sort so that larger items come first, with ties broken arbitrarily by
# the set's index
for entries in element_to_entries.values():
entries.sort()
# Now build up the output by going over each setlist and walking over the entries list for
# each element in the setlist. Since the entries list for each element is sorted largest to
# smallest, the first entry we find that is in every entry set we pulled will be the largest
# element of the input that contains each item in this setlist. We are guaranteed to eventually
# find such an element because, at the very least, the item we're iterating on itself is in
# each entries list.
output = []
for idx, setlist in enumerate(setlists):
num_elements = len(setlist)
buckets = [element_to_entries[element] for element in setlist]
# We implement the search for an item that appears in every list by maintaining a heap and
# a queue. We have the invariants that:
# 1. The queue contains the n smallest items across all the buckets, in order
# 2. The heap contains the smallest item from each bucket that has not already passed through
# the queue.
smallest_entries_heap = []
smallest_entries_deque = deque([], num_elements)
for bucket_idx, bucket in enumerate(buckets):
smallest_entries_heap.append((bucket[0], bucket_idx, 0))
heapq.heapify(smallest_entries_heap)
while (len(smallest_entries_deque) < num_elements or
smallest_entries_deque[0] != smallest_entries_deque[num_elements - 1]):
# First extract the next smallest entry in the queue ...
(smallest_entry, bucket_idx, element_within_bucket_idx) = heapq.heappop(smallest_entries_heap)
smallest_entries_deque.append(smallest_entry)
# ... then add the next-smallest item from the bucket that we just removed an element from
if element_within_bucket_idx + 1 < len(buckets[bucket_idx]):
new_element = buckets[bucket_idx][element_within_bucket_idx + 1]
heapq.heappush(smallest_entries_heap, (new_element, bucket_idx, element_within_bucket_idx + 1))
output.append((idx, smallest_entries_deque[0][1]))
return output
Note: don't trust my writeup too much here. I just thought of this algorithm right now, I haven't proved it correct or anything.
So you have millions of sets, with thousands of elements each. Just representing that dataset takes billions of integers. In your comparisons you'll quickly get to trillions of operations without even breaking a sweat.
Therefore I'll assume that you need a solution which will distribute across a lot of machines. Which means that I'll think in terms of https://en.wikipedia.org/wiki/MapReduce. A series of them.
Read the sets in, mapping them to k:v pairs of i: s where i is an element of the set s.
Receive a key of an integers, along with a list of sets. Map them off to pairs (s1, s2): i where s1 <= s2 are both sets that included to i. Do not omit to map each set to be paired with itself!
For each pair (s1, s2) count the size k of the intersection, and send off pairs s1: k, s2: k. (Only send the second if s1 and s2 are different.
For each set s receive the set of supersets. If it is maximal, send off s: s. Otherwise send off t: s for every t that is a strict superset of s.
For each set s, receive the set of subsets, with s in the list only if it is maximal. If s is maximal, send off t: s for every t that is a subset of s.
For each set we receive the set of maximal sets that it is a subset of. (There may be many.)
There are a lot of steps for this, but at its heart it requires repeated comparisons between pairs of sets with a common element for each common element. Potentially that is O(n * n * m) where n is the number of sets and m is the number of distinct elements that are in many sets.
Here is a simple suggestion for an algorithm that might give better results based on your numbers (n = 10^6 to 10^7 sets with m = 2 to 10^5 members, a lot of super/subsets). Of course it depends a lot on your data. Generally speaking complexity is much worse than for the other proposed algorithms. Maybe you could only process the sets with less than X, e.g. 1000 members that way and for the rest use the other proposed methods.
Sort the sets by their size.
Remove the first (smallest) set and start comparing it against the others from behind (largest set first).
Stop as soon as you found a superset and create a relation. Just remove if no superset was found.
Repeat 2. and 3. for all but the last set.
If you're using Excel, you could structure it as follows:
1) Create a cartesian plot as a two-way table that has all your data sets as titles on both the side and the top
2) In a seperate tab, create a row for each data set in the first column, along with a second column that will count the number of entries (ex: F has 4) and then just stack FIND(",") and MID formulas across the sheet to split out all the entries within each data set. Use the counter in the second column to do COUNTIF(">0"). Each variable you find can be your starting point in a subsequent FIND until it runs out of variables and just returns a blank.
3) Go back to your cartesian plot, and bring over the separate entries you just generated for your column titles (ex: F is 1,2,3,7). Use an AND statement to then check that each entry in your left hand column is in your top row data set using an OFFSET to your seperate area and utilizing your counter as the width for the OFFSET
How can I generate a random number that is in the range (1,n) but not in a certain list (i,j)?
Example: range is (1,500), list is [1,3,4,45,199,212,344].
Note: The list may not be sorted
Rejection Sampling
One method is rejection sampling:
Generate a number x in the range (1, 500)
Is x in your list of disallowed values? (Can use a hash-set for this check.)
If yes, return to step 1
If no, x is your random value, done
This will work fine if your set of allowed values is significantly larger than your set of disallowed values:if there are G possible good values and B possible bad values, then the expected number of times you'll have to sample x from the G + B values until you get a good value is (G + B) / G (the expectation of the associated geometric distribution). (You can sense check this. As G goes to infinity, the expectation goes to 1. As B goes to infinity, the expectation goes to infinity.)
Sampling a List
Another method is to make a list L of all of your allowed values, then sample L[rand(L.count)].
The technique I usually use when the list is length 1 is to generate a random
integer r in [1,n-1], and if r is greater or equal to that single illegal
value then increment r.
This can be generalised for a list of length k for small k but requires
sorting that list (you can't do your compare-and-increment in random order). If the list is moderately long, then after the sort you can start with a bsearch, and add the number of values skipped to r, and then recurse into the remainder of the list.
For a list of length k, containing no value greater or equal to n-k, you
can do a more direct substitution: generate random r in [1,n-k], and
then iterate through the list testing if r is equal to list[i]. If it is
then set r to n-k+i (this assumes list is zero-based) and quit.
That second approach fails if some of the list elements are in [n-k,n].
I could try to invest something clever at this point, but what I have so far
seems sufficient for uniform distributions with values of k much less than
n...
Create two lists -- one of illegal values below n-k, and the other the rest (this can be done in place).
Generate random r in [1,n-k]
Apply the direct substitution approach for the first list (if r is list[i] then set r to n-k+i and go to step 5).
If r was not altered in step 3 then we're finished.
Sort the list of larger values and use the compare-and-increment method.
Observations:
If all values are in the lower list, there will be no sort because there is nothing to sort.
If all values are in the upper list, there will be no sort because there is no occasion on which r is moved into the hazardous area.
As k approaches n, the maximum size of the upper (sorted) list grows.
For a given k, if more value appear in the upper list (the bigger the sort), the chance of getting a hit in the lower list shrinks, reducing the likelihood of needing to do the sort.
Refinement:
Obviously things get very sorty for large k, but in such cases the list has comparatively few holes into which r is allowed to settle. This could surely be exploited.
I might suggest something different if many random values with the same
list and limits were needed. I hope that the list of illegal values is not the
list of results of previous calls to this function, because if it is then you
wouldn't want any of this -- instead you would want a Fisher-Yates shuffle.
Rejection sampling would be the simplest if possible as described already. However, if you didn't want use that, you could convert the range and disallowed values to sets and find the difference. Then, you could choose a random value out of there.
Assuming you wanted the range to be in [1,n] but not in [i,j] and that you wanted them uniformly distributed.
In Python
total = range(1,n+1)
disallowed = range(i,j+1)
allowed = list( set(total) - set(disallowed) )
return allowed[random.randrange(len(allowed))]
(Note that this is not EXACTLY uniform since in all likeliness, max_rand%len(allowed) != 0 but this will in most practical applications be very close)
I assume that you know how to generate a random number in [1, n) and also your list is ordered like in the example above.
Let's say that you have a list with k elements. Make a map(O(logn)) structure, which will ensure speed if k goes higher. Put all elements from list in map, where element value will be the key and "good" value will be the value. Later on I'll explain about "good" value. So when we have the map then just find a random number in [1, n - k - p)(Later on I'll explain what is p) and if this number is in map then replace it with "good" value.
"GOOD" value -> Let's start from k-th element. It's good value is its own value + 1, because the very next element is "good" for us. Now let's look at (k-1)th element. We assume that its good value is again its own value + 1. If this value is equal to k-th element then the "good" value for (k-1)th element is k-th "good" value + 1. Also you will have to store the largest "good" value. If the largest value exceed n then p(from above) will be p = largest - n.
Of course I recommend you this only if k is big number otherwise #Timothy Shields' method is perfect.
I have a list of elements, each one identified with a type, I need to reorder the list to maximize the minimum distance between elements of the same type.
The set is small (10 to 30 items), so performance is not really important.
There's no limit about the quantity of items per type or quantity of types, the data can be considered random.
For example, if I have a list of:
5 items of A
3 items of B
2 items of C
2 items of D
1 item of E
1 item of F
I would like to produce something like:
A, B, C, A, D, F, B, A, E, C, A, D, B, A
A has at least 2 items between occurences
B has at least 4 items between occurences
C has 6 items between occurences
D has 6 items between occurences
Is there an algorithm to achieve this?
-Update-
After exchanging some comments, I came to a definition of a secondary goal:
main goal: maximize the minimum distance between elements of the same type, considering only the type(s) with less distance.
secondary goal: maximize the minimum distance between elements on every type. IE: if a combination increases the minimum distance of a certain type without decreasing other, then choose it.
-Update 2-
About the answers.
There were a lot of useful answers, although none is a solution for both goals, specially the second one which is tricky.
Some thoughts about the answers:
PengOne: Sounds good, although it doesn't provide a concrete implementation, and not always leads to the best result according to the second goal.
Evgeny Kluev: Provides a concrete implementation to the main goal, but it doesn't lead to the best result according to the secondary goal.
tobias_k: I liked the random approach, it doesn't always lead to the best result, but it's a good approximation and cost effective.
I tried a combination of Evgeny Kluev, backtracking, and tobias_k formula, but it needed too much time to get the result.
Finally, at least for my problem, I considered tobias_k to be the most adequate algorithm, for its simplicity and good results in a timely fashion. Probably, it could be improved using Simulated annealing.
First, you don't have a well-defined optimization problem yet. If you want to maximized the minimum distance between two items of the same type, that's well defined. If you want to maximize the minimum distance between two A's and between two B's and ... and between two Z's, then that's not well defined. How would you compare two solutions:
A's are at least 4 apart, B's at least 4 apart, and C's at least 2 apart
A's at least 3 apart, B's at least 3 apart, and C's at least 4 apart
You need a well-defined measure of "good" (or, more accurately, "better"). I'll assume for now that the measure is: maximize the minimum distance between any two of the same item.
Here's an algorithm that achieves a minimum distance of ceiling(N/n(A)) where N is the total number of items and n(A) is the number of items of instance A, assuming that A is the most numerous.
Order the item types A1, A2, ... , Ak where n(Ai) >= n(A{i+1}).
Initialize the list L to be empty.
For j from k to 1, distribute items of type Ak as uniformly as possible in L.
Example: Given the distribution in the question, the algorithm produces:
F
E, F
D, E, D, F
D, C, E, D, C, F
B, D, C, E, B, D, C, F, B
A, B, D, A, C, E, A, B, D, A, C, F, A, B
This sounded like an interesting problem, so I just gave it a try. Here's my super-simplistic randomized approach, done in Python:
def optimize(items, quality_function, stop=1000):
no_improvement = 0
best = 0
while no_improvement < stop:
i = random.randint(0, len(items)-1)
j = random.randint(0, len(items)-1)
copy = items[::]
copy[i], copy[j] = copy[j], copy[i]
q = quality_function(copy)
if q > best:
items, best = copy, q
no_improvement = 0
else:
no_improvement += 1
return items
As already discussed in the comments, the really tricky part is the quality function, passed as a parameter to the optimizer. After some trying I came up with one that almost always yields optimal results. Thank to pmoleri, for pointing out how to make this a whole lot more efficient.
def quality_maxmindist(items):
s = 0
for item in set(items):
indcs = [i for i in range(len(items)) if items[i] == item]
if len(indcs) > 1:
s += sum(1./(indcs[i+1] - indcs[i]) for i in range(len(indcs)-1))
return 1./s
And here some random result:
>>> print optimize(items, quality_maxmindist)
['A', 'B', 'C', 'A', 'D', 'E', 'A', 'B', 'F', 'C', 'A', 'D', 'B', 'A']
Note that, passing another quality function, the same optimizer could be used for different list-rearrangement tasks, e.g. as a (rather silly) randomized sorter.
Here is an algorithm that only maximizes the minimum distance between elements of the same type and does nothing beyond that. The following list is used as an example:
AAAAA BBBBB CCCC DDDD EEEE FFF GG
Sort element sets by number of elements of each type in descending order. Actually only largest sets (A & B) should be placed to the head of the list as well as those element sets that have one element less (C & D & E). Other sets may be unsorted.
Reserve R last positions in the array for one element from each of the largest sets, divide the remaining array evenly between the S-1 remaining elements of the largest sets. This gives optimal distance: K = (N - R) / (S - 1). Represent target array as a 2D matrix with K columns and L = N / K full rows (and possibly one partial row with N % K elements). For example sets we have R = 2, S = 5, N = 27, K = 6, L = 4.
If matrix has S - 1 full rows, fill first R columns of this matrix with elements of the largest sets (A & B), otherwise sequentially fill all columns, starting from last one.
For our example this gives:
AB....
AB....
AB....
AB....
AB.
If we try to fill the remaining columns with other sets in the same order, there is a problem:
ABCDE.
ABCDE.
ABCDE.
ABCE..
ABD
The last 'E' is only 5 positions apart from the first 'E'.
Sequentially fill all columns, starting from last one.
For our example this gives:
ABFEDC
ABFEDC
ABFEDC
ABGEDC
ABG
Returning to linear array we have:
ABFEDCABFEDCABFEDCABGEDCABG
Here is an attempt to use simulated annealing for this problem (C sources): http://ideone.com/OGkkc.
I believe you could see your problem like a bunch of particles that physically repel eachother. You could iterate to a 'stable' situation.
Basic pseudo-code:
force( x, y ) = 0 if x.type==y.type
1/distance(x,y) otherwise
nextposition( x, force ) = coined?(x) => same
else => x + force
notconverged(row,newrow) = // simplistically
row!=newrow
row=[a,b,a,b,b,b,a,e];
newrow=nextposition(row);
while( notconverged(row,newrow) )
newrow=nextposition(row);
I don't know if it converges, but it's an idea :)
I'm sure there may be a more efficient solution, but here is one possibility for you:
First, note that it is very easy to find an ordering which produces a minimum-distance-between-items-of-same-type of 1. Just use any random ordering, and the MDBIOST will be at least 1, if not more.
So, start off with the assumption that the MDBIOST will be 2. Do a recursive search of the space of possible orderings, based on the assumption that MDBIOST will be 2. There are a number of conditions you can use to prune branches from this search. Terminate the search if you find an ordering which works.
If you found one that works, try again, under the assumption that MDBIOST will be 3. Then 4... and so on, until the search fails.
UPDATE: It would actually be better to start with a high number, because that will constrain the possible choices more. Then gradually reduce the number, until you find an ordering which works.
Here's another approach.
If every item must be kept at least k places from every other item of the same type, then write down items from left to right, keeping track of the number of items left of each type. At each point put down an item with the largest number left that you can legally put down.
This will work for N items if there are no more than ceil(N / k) items of the same type, as it will preserve this property - after putting down k items we have k less items and we have put down at least one of each type that started with at ceil(N / k) items of that type.
Given a clutch of mixed items you could work out the largest k you can support and then lay out the items to solve for this k.
I have a symmetric matrix like shown in the image attached below.
I've made up the notation A.B which represents the value at grid point (A, B). Furthermore, writing A.B.C gives me the minimum grid point value like so: MIN((A,B), (A,C), (B,C)).
As another example A.B.D gives me MIN((A,B), (A,D), (B,D)).
My goal is to find the minimum values for ALL combinations of letters (not repeating) for one row at a time e.g for this example I need to find min values with respect to row A which are given by the calculations:
A.B = 6
A.C = 8
A.D = 4
A.B.C = MIN(6,8,6) = 6
A.B.D = MIN(6, 4, 4) = 4
A.C.D = MIN(8, 4, 2) = 2
A.B.C.D = MIN(6, 8, 4, 6, 4, 2) = 2
I realize that certain calculations can be reused which becomes increasingly important as the matrix size increases, but the problem is finding the most efficient way to implement this reuse.
Can point me in the right direction to finding an efficient algorithm/data structure I can use for this problem?
You'll want to think about the lattice of subsets of the letters, ordered by inclusion. Essentially, you have a value f(S) given for every subset S of size 2 (that is, every off-diagonal element of the matrix - the diagonal elements don't seem to occur in your problem), and the problem is to find, for each subset T of size greater than two, the minimum f(S) over all S of size 2 contained in T. (And then you're interested only in sets T that contain a certain element "A" - but we'll disregard that for the moment.)
First of all, note that if you have n letters, that this amounts to asking Omega(2^n) questions, roughly one for each subset. (Excluding the zero- and one-element subsets and those that don't include "A" saves you n + 1 sets and a factor of two, respectively, which is allowed for big Omega.) So if you want to store all these answers for even moderately large n, you'll need a lot of memory. If n is large in your applications, it might be best to store some collection of pre-computed data and do some computation whenever you need a particular data point; I haven't thought about what would work best, but for example computing data only for a binary tree contained in the lattice would not necessarily help you anything beyond precomputing nothing at all.
With these things out of the way, let's assume you actually want all the answers computed and stored in memory. You'll want to compute these "layer by layer", that is, starting with the three-element subsets (since the two-element subsets are already given by your matrix), then four-element, then five-element, etc. This way, for a given subset S, when we're computing f(S) we will already have computed all f(T) for T strictly contained in S. There are several ways that you can make use of this, but I think the easiest might be to use two such subset S: let t1 and t2 be two different elements of T that you may select however you like; let S be the subset of T that you get when you remove t1 and t2. Write S1 for S plus t1 and write S2 for S plus t2. Now every pair of letters contained in T is either fully contained in S1, or it is fully contained in S2, or it is {t1, t2}. Look up f(S1) and f(S2) in your previously computed values, then look up f({t1, t2}) directly in the matrix, and store f(T) = the minimum of these 3 numbers.
If you never select "A" for t1 or t2, then indeed you can compute everything you're interested in while not computing f for any sets T that don't contain "A". (This is possible because the steps outlined above are only interesting whenever T contains at least three elements.) Good! This leaves just one question - how to store the computed values f(T). What I would do is use a 2^(n-1)-sized array; represent each subset-of-your-alphabet-that-includes-"A" by the (n-1) bit number where the ith bit is 1 whenever the (i+1)th letter is in that set (so 0010110, which has bits 2, 4, and 5 set, represents the subset {"A", "C", "D", "F"} out of the alphabet "A" .. "H" - note I'm counting bits starting at 0 from the right, and letters starting at "A" = 0). This way, you can actually iterate through the sets in numerical order and don't need to think about how to iterate through all k-element subsets of an n-element set. (You do need to include a special case for when the set under consideration has 0 or 1 element, in which case you'll want to do nothing, or 2 elements, in which case you just copy the value from the matrix.)
Well, it looks simple to me, but perhaps I misunderstand the problem. I would do it like this:
let P be a pattern string in your notation X1.X2. ... .Xn, where Xi is a column in your matrix
first compute the array CS = [ (X1, X2), (X1, X3), ... (X1, Xn) ], which contains all combinations of X1 with every other element in the pattern; CS has n-1 elements, and you can easily build it in O(n)
now you must compute min (CS), i.e. finding the minimum value of the matrix elements corresponding to the combinations in CS; again you can easily find the minimum value in O(n)
done.
Note: since your matrix is symmetric, given P you just need to compute CS by combining the first element of P with all other elements: (X1, Xi) is equal to (Xi, X1)
If your matrix is very large, and you want to do some optimization, you may consider prefixes of P: let me explain with an example
when you have solved the problem for P = X1.X2.X3, store the result in an associative map, where X1.X2.X3 is the key
later on, when you solve a problem P' = X1.X2.X3.X7.X9.X10.X11 you search for the longest prefix of P' in your map: you can do this by starting with P' and removing one component (Xi) at a time from the end until you find a match in your map or you end up with an empty string
if you find a prefix of P' in you map then you already know the solution for that problem, so you just have to find the solution for the problem resulting from combining the first element of the prefix with the suffix, and then compare the two results: in our example the prefix is X1.X2.X3, and so you just have to solve the problem for
X1.X7.X9.X10.X11, and then compare the two values and choose the min (don't forget to update your map with the new pattern P')
if you don't find any prefix, then you must solve the entire problem for P' (and again don't forget to update the map with the result, so that you can reuse it in the future)
This technique is essentially a form of memoization.