Cyclic imports and lack of generics causing headache - go

Say I have these two files in golang:
// main/a/a.go
import "main/b"
type Model struct {
ID int `json:"id"`
Me int `json:"me"`
You int `json:"you"`
}
func zoom(v b.Injection){
}
func Start(){
// ...
}
and then the second file looks like:
// main/b/b.go
import "main/a"
type Injection struct {
ModelA a.Model
}
func GetInjection() Injection {
return Injection{
ModelA: a.Start(),
}
}
so as you can see, these are circular imports, each file imports the other.
So I need to use a 3rd file, and have these two files import the 3rd file.
But I am really struggling how to get this functionality and avoid cyclic imports.
My first step, is to move the Injection type into a 3rd file:
// main/c/c.go
type Injection struct {
ModelA interface{} // formerly a.Model
}
so now this is what it looks like:
a imports c
b imports a,c
so no more cycles, however the problem is that I don't know how to create an interface for a.Model in c.go? An empty interface{} like I used above doesn't work, for the normal reasons.
How do I solve this cyclic import problem with these 2 original files?

If you want them to put into separate packages, you can't have Model and zoom() in the same package, as zoom() refers to Injection and Injection refers to Model.
So a possible solution is to put Model into package a, zoom() into package b, and Injection into package c. c.Injection can refer to a.Model, b.zoom() can refer to c.Injection. There's no circle in this:
b.zoom() --------> c.Injection ---------> a.Model
I assume there are other references in your real code which are not in the question which may prevent this from working, but you can move "stuff" around between packages, or you can break it down into more.
Also, if things are coupled this "tight", you should really consider putting them into the same package, and then there is no problem to solve.
Another way to solve circular import issue is to introduce interfaces. E.g. if your zoom() function would not refer to Injection, the package containing Model and zoom() would not need to refer to Injection's package.
Inspect what zoom() needs to do with Injection. If that is method calls, that's already good. If not, add methods to Injection. Then you may define an interface in zoom()'s package containing the methods zoom() needs to call, and change its parameter type to this interface. Implementing interfaces in Go is implicit, there is no declaration of intent. So you can remove the reference in the parameter type, still you will be able to pass Injection values to zoom().
Also related, check Dave Cheney's thoughts about organizing code:
I believe code should be organised into packages names for what the package provides, not what it contains. This can sometimes be subtle, but usually not.
For example, http, provides http clients and servers.
As a counter example, package utils is a poor name, yes it provides utilities, but you have no idea what from the name, in truth this package is named for what it contains.
If your project is a library, it should contain one package (excluding examples and possibly utility commands), if it contains more packages, that is a sign that the library is trying to do too many things.
Prefer to avoid multiple packages by default, only split code by package if there is a clear separation of concerns. In my experience many frustrations with complex and possibly circular package structures are the result of too many packages in a project.

Related

Can I reference an imported type without using dot notation

Consider the following interface definition:
package repos
import (
resources "unit/pkg/resources"
)
type IRepo interface {
fetch(int32) (resources.IResource, error)
update(resources.IResource) (resources.IResource, error)
new() resources.IResource
create(resources.IResource) (resources.IResource, error)
delete(int32) error
}
Is there a way to 'use' the imported package (in the sense of C++ namespaces), so that I don't need to explicitly name it using dot notation each time I reference one of its types (IResource)
(TBH - this may just mean that IResource belongs in the repos package and not in resources)
You can prefix the import declaration with the name . to import all of its identifiers:
package repos
import (
. "unit/pkg/resources"
)
However, import . is almost never the appropriate solution. If new identifiers are added to the resources package in the future, they can collide with existing identifiers in the repos package and break your build.
Furthermore, the fact that the package name is redundant with the type name may indicate that either the package or the types within that package should have a better name (see the Package names blog post for much more detail).
In this case, perhaps the abstraction boundary between resources and repos is doing more harm than good. What kind of resources are you dealing with here? Could the Resource type be moved into some higher-level package?
Finally, I would note that the IRepo interface seems very large and likely out-of-place. Go interfaces — unlike, say, Java interfaces — generally belong with the API that consumes the interface, not the API that provides implementations of that interface.
For more on that principle, see:
https://golang.org/wiki/CodeReviewComments#interfaces
https://hyeomans.com/golang-and-interfaces-misuse/
https://dave.cheney.net/2016/08/20/solid-go-design
https://dave.cheney.net/practical-go/presentations/gophercon-israel.html#_prefer_single_method_interfaces
You can use a type alias.
type IRes = resources.IResource
In contrast to a type definition, an alias is just another name for the same type and not a new distinct type. A type definition would be without the =.

Encapsulation of third party configuration structs

I am working on a Go project where I am utilizing some rather big third-party client libraries to communicate with some third-party REST apis. My intent is to decouple my internal code API from these specific dependencies.
Decoupling specific methods from these libraries in my code is straightforward as I only need a subset of the functionality and I am able to abstract the use cases. Therefore I am introducing a new type in my code which implements my specific use cases; the underlying implementation then relies on the third-party dependencies.
Where I have a problem to understand how to find a good decoupling are configuration structs. Usually, the client libraries I am using provide some functions of this form
createResourceA(options *ResourceAOptions) (*ResourceA, error)
createResourceB(options *ResourceBOptions) (*ResourceB, error)
where *ResourceA and *ResourceB are the server-side configurations of the corresponding resources after their creation.
The different options are rather big configuration structs for the resources with lots of fields, nested structs, and so on. In general, these configurations hold more options then needed in my application, but the overall overlap is in the end rather big.
As I want to avoid that my internal code has to import the specific dependencies to have access to the configuration structs I want to encapsulate these.
My current approach for encapsulation is to define my own configuration structs which I then use to configure the third party dependencies. To give a simple example:
import a "github.com/client-a"
// MyClient implements my use case functions
type MyClient struct{}
// MyConfiguration wraps more or less the configuration options
// provided by the client-a dependency
type MyConfiguration struct{
Strategy StrategyType
StrategyAOptions *StrategyAOptions
StrategyBOptions *StrategyBOptions
}
type StrategyType int
const (
StrategyA StrategyType = iota
StrategyB
)
type StrategyAOptions struct{}
type StrategyBOptions struct{}
func (c *MyClient) UseCaseA(options *MyConfiguration) error {
cfg := &a.Config{}
if (options.Strategy = StrategyA) {
cfg.TypeStrategy = a.TypeStrategyXY
}
...
a.CreateResourceA(cfg)
}
As the examples shows with this method I can encapsulate the third-party configuration structs, but I think this solution does not scale very well. I already encounter some examples where I am basically reimplementing types from the dependency in my code just to abstract the dependency away.
Here I am looking for maybe more sophisticated solutions and/or some insights if my approach is generally wrong.
Further research from me:
I looked into struct embedding and if that can help me. But, as the configurations hold non-trivial members, I end up importing the dependency in my calling code as well to fill the fields.
As the usual guideline seems to be Accept interfaces return structs I tried to find a good solution with this approach. But here I can end up with a rather big interfaces as well and in the go standard library configuration structs seem not to be used via interfaces. I was not able to find an explicit statement if hiding configurations behind interfaces is a good practice in Go.
To sum it up:
I would like to know how to abstract configuration structs from third-party libraries without ending up redefining the same data types in my code.
What about a very simple thing - redefining the struct types you need in your wrapper package?
I am very new to go, so this might be not the best way to proceed.
package myConfig
import a "github.com/client-a"
type aConfig a.Config
then you only need to import your myConfig package
import "myConfig"
// myConfig.aConfig is actually a.Config
myConfig.aConfig
Not really sure if this helps a lot since this is not real decoupling, but at least you will not need to import "github.com/client-a" in every place

What is the convention for organising interfaces and their implementations in a Go project?

What is the convention for organising interfaces and their implementations in a Go project?
I am new to Go and creating a small project, I currently have this folder structure:
src/
my-repo/
solve/
backtracksolve.go
permutatesolve.go
...
solver.go
... (some repositories and packages omitted for brevity) ...
backtracksolve and permutatesolve both implement the interface solver so it make sense to keep them in the same package as the interface and other implementations of that interface, coming from Java/C# this is a common convention for example, java.util contains interfaces such as Set, Map, List, while also having implementations such as HashSet, HashMap and ArrayList.
However in Go because they both implement a func Solve() and both in the package solve there is redeclared exception.
Is it the convention to create a sub directory for each implementation (below) or something completely different?
src/
my-repo/
solve/
backtrack/
backtracksolve.go
permutation/
permutatesolve.go
solver.go
You would generally define different types that implement your Solver interface and then define the Solve function on those types.
func (s *BackTrackSolver) Solve() { … }
func (s *PermutateSolver) Solve() { … }
Because the types have distinct names there is no name clash.
You can try it out online in the go playground.
About your package convention question: I think a good approach is to start with all code in a single package and only export the types and functions you actually want to expose to your callers. Then later when you your code cohesion drops you should start splitting out code into multiple packages.
Also have a look at the "Organizing Go code" article from the go blog, subsection "What to put into a package" (short read).

How to define a struct globally and reuse it packages

Im very new to Go and have this "design" problem.
I have a main program passing jobs through channels. Each job will end up in a function defined in separate "worker" packages. Jobs are structs.
Now i want each function called, to return result as a common struct through a "result" channel. But the package doesnt know about the struct definition i have in main and so i cannot define it.
package main
type resultEvent struct {
name string
desc string
}
Then in a worker package:
package worker
func Test() {
result := &resultEvent{name: "test"}
}
Of course the idea is to eventually send this result down a channel, but even this simple example wont work, because worker doesnt know about resultEvent.
What would be the correct way of doing this?
Update:
It should be noted that there will be many worker packages, doing different things. Sorta like "plugins" (only not pluggable at all).
I dont want to define a redundant struct in each go-file and then have to maintain that over maybe 50 very different worker-packages.
Im looking for what would be the correct way to structure this, so i can reuse one struct for all worker-packages.
Basically, anything that lives in package main will only ever be able to be referenced from that pacakge. If you want it to be shared between multiple packages, put it in the worker package and export it (Upper case the first letter), then import worker from main.
No matter what, you will have to import the package which contains the type you'd like to use. However, the reason this isn't working for you is because your type is not exported. You need to uppercase the types name like;
type ResultEvent struct {
name string
desc string
}
Worth checking out what exported vs unexported means but basically upper case means exported which is similar to the public specifier in other systems languages. Lower case means unexported which is more like internal or private.
As pointed out in the comment and other answer you can't import main so I believe you'll have to move your types definition as well.
One possible way would be something like:
package workerlib
type ResultEvent struct {
Name string // Export the struct fields, unless you have a
Description string // real good reason not to.
}
Then stick the rest of the worker utility functions in that package. Unless you provide suitable methods to read the name and description from an event, simply export the fields. If you have an absolute need to make them changeable only from within the package they're defined in, you could keep them unexported, then provide a function to create a ResultEvent as well as methods to read the name and description.

Cyclic dependencies and interfaces

I am a long time python developer. I was trying out Go, converting an existing python app to Go. It is modular and works really well for me.
Upon creating the same structure in Go, I seem to land in cyclic import errors, a lot more than I want to. Never had any import problems in python. I never even had to use import aliases. So I may have had some cyclic imports which were not evident in python. I actually find that strange.
Anyways, I am lost, trying to fix these in Go. I have read that interfaces can be used to avoid cyclic dependencies. But I don't understand how. I didn't find any examples on this either. Can somebody help me on this?
The current python application structure is as follows:
/main.py
/settings/routes.py contains main routes depends on app1/routes.py, app2/routes.py etc
/settings/database.py function like connect() which opens db session
/settings/constants.py general constants
/apps/app1/views.py url handler functions
/apps/app1/models.py app specific database functions depends on settings/database.py
/apps/app1/routes.py app specific routes
/apps/app2/views.py url handler functions
/apps/app2/models.py app specific database functions depends on settings/database.py
/apps/app2/routes.py app specific routes
settings/database.py has generic functions like connect() which opens a db session. So an app in the apps package calls database.connect() and a db session is opened.
The same is the case with settings/routes.py it has functions that allow apps to add their sub-routes to the main route object.
The settings package is more about functions than data/constants. This contains code that is used by apps in the apps package, that would otherwise have to be duplicated in all the apps. So if I need to change the router class, for instance, I just have to change settings/router.py and the apps will continue to work with no modifications.
There're two high-level pieces to this: figuring out which code goes in which package, and tweaking your APIs to reduce the need for packages to take on as many dependencies.
On designing APIs that avoid the need for some imports:
Write config functions for hooking packages up to each other at run time rather than compile time. Instead of routes importing all the packages that define routes, it can export routes.Register, which main (or code in each app) can call. In general, configuration info probably flows through main or a dedicated package; scattering it around too much can make it hard to manage.
Pass around basic types and interface values. If you're depending on a package for just a type name, maybe you can avoid that. Maybe some code handling a []Page can get instead use a []string of filenames or a []int of IDs or some more general interface (sql.Rows) instead.
Consider having 'schema' packages with just pure data types and interfaces, so User is separate from code that might load users from the database. It doesn't have to depend on much (maybe on anything), so you can include it from anywhere. Ben Johnson gave a lightning talk at GopherCon 2016 suggesting that and organizing packages by dependencies.
On organizing code into packages:
As a rule, split a package up when each piece could be useful on its own. If two pieces of functionality are really intimately related, you don't have to split them into packages at all; you can organize with multiple files or types instead. Big packages can be OK; Go's net/http is one, for instance.
Break up grab-bag packages (utils, tools) by topic or dependency. Otherwise you can end up importing a huge utils package (and taking on all its dependencies) for one or two pieces of functionality (that wouldn't have so many dependencies if separated out).
Consider pushing reusable code 'down' into lower-level packages untangled from your particular use case. If you have a package page containing both logic for your content management system and all-purpose HTML-manipulation code, consider moving the HTML stuff "down" to a package html so you can use it without importing unrelated content management stuff.
Here, I'd rearrange things so the router doesn't need to include the routes: instead, each app package calls a router.Register() method. This is what the Gorilla web toolkit's mux package does. Your routes, database, and constants packages sound like low-level pieces that should be imported by your app code and not import it.
Generally, try to build your app in layers. Your higher-layer, use-case-specific app code should import lower-layer, more fundamental tools, and never the other way around. Here are some more thoughts:
Packages are good for separating independently usable bits of functionality from the caller's perspective. For your internal code organization, you can easily shuffle code between source files in the package. The initial namespace for symbols you define in x/foo.go or x/bar.go is just package x, and it's not that hard to split/join files as needed, especially with the help of a utility like goimports.
The standard library's net/http is about 7k lines (counting comments/blanks but not tests). Internally, it's split into many smaller files and types. But it's one package, I think 'cause there was no reason users would want, say, just cookie handling on its own. On the other hand, net and net/url are separate because they have uses outside HTTP.
It's great if you can push "down" utilities into libraries that are independent and feel like their own polished products, or cleanly layer your application itself (e.g., UI sits atop an API sits atop some core libraries and data models). Likewise "horizontal" separation may help you hold the app in your head (e.g., the UI layer breaks up into user account management, the application core, and administrative tools, or something finer-grained than that). But, the core point is, you're free to split or not as works for you.
Set up APIs to configure behavior at run-time so you don't have to import it at compile time. So, for example, your URL router can expose a Register method instead of importing appA, appB, etc. and reading a var Routes from each. You could make a myapp/routes package that imports router and all your views and calls router.Register. The fundamental idea is that the router is all-purpose code that needn't import your application's views.
Some ways to put together config APIs:
Pass app behavior via interfaces or funcs: http can be passed custom implementations of Handler (of course) but also CookieJar or File. text/template and html/template can accept functions to be accessible from templates (in a FuncMap).
Export shortcut functions from your package if appropriate: In http, callers can either make and separately configure some http.Server objects, or call http.ListenAndServe(...) that uses a global Server. That gives you a nice design--everything's in an object and callers can create multiple Servers in a process and such--but it also offers a lazy way to configure in the simple single-server case.
If you have to, just duct-tape it: You don't have to limit yourself to super-elegant config systems if you can't fit one to your app: maybe for some stuff a package "myapp/conf" with a global var Conf map[string]interface{} is useful.
But be aware of downsides to global conf. If you want to write reusable libraries, they can't import myapp/conf; they need to accept all the info they need in constructors, etc. Globals also risk hard-wiring in an assumption something will always have a single value app-wide when it eventually won't; maybe today you have a single database config or HTTP server config or such, but someday you don't.
Some more specific ways to move code or change definitions to reduce dependency issues:
Separate fundamental tasks from app-dependent ones. One app I work on in another language has a "utils" module mixing general tasks (e.g., formatting datetimes or working with HTML) with app-specific stuff (that depends on the user schema, etc.). But the users package imports the utils, creating a cycle. If I were porting to Go, I'd move the user-dependent utils "up" out of the utils module, maybe to live with the user code or even above it.
Consider breaking up grab-bag packages. Slightly enlarging on the last point: if two pieces of functionality are independent (that is, things still work if you move some code to another package) and unrelated from the user's perspective, they're candidates to be separated into two packages. Sometimes the bundling is harmless, but other times it leads to extra dependencies, or a less generic package name would just make clearer code. So my utils above might be broken up by topic or dependency (e.g., strutil, dbutil, etc.). If you wind up with lots of packages this way, we've got goimports to help manage them.
Replace import-requiring object types in APIs with basic types and interfaces. Say two entities in your app have a many-to-many relationship like Users and Groups. If they live in different packages (a big 'if'), you can't have both u.Groups() returning a []group.Group and g.Users() returning []user.User because that requires the packages to import each other.
However, you could change one or both of those return, say, a []uint of IDs or a sql.Rows or some other interface you can get to without importing a specific object type. Depending on your use case, types like User and Group might be so intimately related that it's better just to put them in one package, but if you decide they should be distinct, this is a way.
Thanks for the detailed question and followup.
Possible partial, but ugly answer:
Have struggled with the import cyclic dependency problem for a year. For a while, was able to decouple enough so that there wasn't an import cycle. My application uses plugins heavily. At the same time, it uses encode/decode libraries (json and gob). For these, I have custom marshall and unmarshall methods, and equivalent for json.
For these to work, the full type name including the package name must be identical on data structures that are passed to the codecs. The creation of the codecs must be in a package. This package is called from both other packages as well as from plugins.
Everything works as long as the codec package doesn't need to call out to any package calling it, or use the methods or interfaces to the methods. In order to be able to use the types from the package in the plugins, the plugins have to be compiled with the package. Since I don't want to have to include the main program in the builds for the plugins, which would break the point of the plugins, only the codec package is included in both the plugins and the main program. Everything works up until I need to call from the codec package in to the main program, after the main program has called in to the codec package. This will cause an import cycle. To get rid of this, I can put the codec in the main program instead of its own package. But, because the specific datatypes being used in the marshalling/unmarshalling methods must be the same in the main program and the plugins, I would need to compile with the main program package for each of the plugins. Further, because I need to the main program to call out to the plugins I need the interface types for the plugins in the main program. Having never found a way to get this to work, I did think of a possible solution:
First, separate the codec in to a plugin, instead of just a package
Then, load it as the first plugin from the main program.
Create a registration function to exchange interfaces with underlying methods.
All encoders and decoders are created by calls in to this plugin.
The plugin calls back to the main program through the registered interface.
The main program and all the plugins use the same interface type package for this.
However, the datatypes for the actual encoded data are referenced in the main program
with a different name, but same underlying type than in the plugins, otherwise the same import cycle exists. to do this part requires doing an unsafe cast. Wrote
a little function that does a forced cast so that the syntax is clean:
(<cast pointer type*>Cast(<pointer to structure, or interface to pointer to structure>).
The only other issue for the codecs is to make sure that when the data is sent to the encoder, it is cast so that the marshall/unmarshall methods recognize the datatype names. To make that easier, can import both the main program types from one package, and the plugin types from another package since they don't reference each other.
Very complex workaround, but don't see how else to make this work.
Have not tried this yet. May still end up with an import cycle when everything is done.
[more on this]
To avoid the import cycle problem, I use an unsafe type approach using pointers. First, here is a package with a little function Cast() to do the unsafe typecasting, to make the code easier to read:
package ForcedCast
import (
"unsafe"
"reflect"
)
// cast function to do casts with to hide the ugly syntax
// used as the following:
// <var> = (cast type)(cast(input var))
func Cast(i interface{})(unsafe.Pointer) {
return (unsafe.Pointer(reflect.ValueOf(i).Pointer()))
}
Next I use the "interface{}" as the equivalent of a void pointer:
package firstpackage
type realstruct struct {
...
}
var Data realstruct
// setup a function to call in to a loaded plugin
var calledfuncptr func(interface)
func callingfunc() {
pluginpath := path.Join(<pathname>, "calledfuncplugin")
plug, err := plugin.Open(pluginpath)
rFunc, err := plug.Lookup("calledfunc")
calledfuncptr = rFunc.(interface{})
calledfuncptr (&Data)
}
//in a plugin
//plugins don't use packages for the main code, are build with -buildmode=plugin
package main
// identical definition of structure
type realstruct struct {
...
}
var localdataptr *realstruct
func calledfunc(needcast interface{}) {
localdataptr = (*realstruct)(Cast(needcast))
}
For cross type dependencies to any other packages, use the "interface{}" as a void pointer and cast appropriately as needed.
This only works if the underlying type that is pointed to by the interface{} is identical wherever it is cast. To make this easier, I put the types in a separate file. In the calling package, they start with the package name. I then make a copy of the type file, change the package to "package main", and put it in the plugin directory so that the types are built, but not the package name.
There is probably a way to do this for the actual data values, not just pointers, but I haven't gotten that to work right.
One of the things I have done is to cast to an interface instead of a datatype pointer. This allows you to send interfaces to packages using the plugin approach, where there is an import cycle. The interface has a pointer to the datatype, and then you can use it for calling the methods on the datatype from the caller from the package that called in to the plugin.
The reason why this works is that the datatypes are not visible outside of the plugin. That is, if I load to plugins, which are both package main, and the types are defined in the package main for both, but are different types with the same names, the types do not conflict.
However, if I put a common package in to both plugins, that package must be identical and have the exact full pathname for where it was compiled from. To accommodate this, I use a docker container to do my builds so that I can force the pathnames to always be correct for any common containers across my plugins.
I did say this was ugly, but it does work. If there is an import cycle because a type in one package uses a type in another package that then tries to use a type from the first package, the approach is to do a plugin that erases both types with interface{}. You can then make method and function calls back and forth doing the casting on the receiving side as needed.
In summary:
Use interface{} to make void pointers (that is, untyped).
Use the Cast() to force them to a pointer type that matches the underlying pointer. Use the plugin type localization so that types in the package main in separate plugins, and in the main program do not conflict If you use a common package between plugins, the path must be identical for all built plugins and the main program. Use the plug package to load the plugins, and exchange function pointers
For one of my issues I'm actually calling from a package in the main program out to a plugin, just to be able to call back to another package in the main program, avoiding the import cycle between the two packages. I ran in to this problem using the json and gob packages with custom marshaller methods. I use the types that are custom marshalled both in my main program, and in other plugins, while at the same time, I want the plugins to be built independent of the main program. I accomplish this by using a package for json and gob encode/decode custom methods that is included both in the main program and the plugins. However, I needed to be able to call back to the main program from the encoder methods, which gave me the import cycle type conflict. The above solution with another plugin specifically to solve the import cycle works. It does create an extra function call, but I have yet to see any other solution to this.
Hope this helps with this issue.
A shorter answer to your question (using interface), that does not take away the correctness and completeness of the other answers, is this example:
UserService is causing cyclic import, where it should not really be called from AuthorizationService. It's just there to be able to extract the user details, so we can declare only the desired functionality in a separated receiver-side interface UserProvider:
https://github.com/tzvatot/cyclic-import-solving-exaple/commit/bc60d7cfcbd4c3b6540bdb4117ab95c3f2987389
Basically, extracting an interface that contains only the required functionality on the receiver side, and use it instead of declaring a dependency on something external.

Resources