Which one is the acceptable convention for undo / redo behavior? - algorithm

Suppose this is a mathematical application that manipulates waveforms. User opens a waveform file, and edits it.
Now user amplifies waveform using the application toolbox. Amplification may take a long time. Then they undo it. And then they redo it again.
For redo, how should the application behave?
Replace result of amplification that was performed before and was held in memory internally by the application.
Re-run the time-consuming amplification procedure again?
This problem expands to every functionality.
Thanks :-)

Undo-redo actions are typically implemented using a stack of commands and the position of the last executed command. After an undo, you move that position one step backward without removing the last command of the stack (now one past the last executed command).
Whether you store data along with your commands is up to you. However, in the situation you describe, for the undo to work, you need to either reverse the last command perfectly (and you may not be able to), or keep the previous state in memory. So keeping the next state, after the amplification, should not cost you anything in this particular case. However, you do need to properly discard it if the user does not redo that command.
As #eddiewould pointed out in a comment, a command can be inherently destructive (so unreversible) and allowing to undo it (by keeping the previous state) can be unfeasable, for example because of memory restrictions. In such a case, you should inform the user beforehand that going back will be impossible.

Related

Can windbg preview edit memory data or register then save status with time travel debugging?

windows release windbg preview with TTD(time trave debugging).
It's very brilliant. But I meet a problem.
When I set TTD, I can not edit register or memory data, like this
How can I edit register value, then save status and continue. So there are two status, one status is that register is changed, another is not changed.
I'm not familiar with TTD, so TTD can do this or has a function like this?
No it's not possible.
TTD is basically a trace record of a program execution. Put simply it goes like this: for each instruction executed by the program, record (in a database) the state of all the registers, which memory address is accessed (if any) what is its value (and if a write happens what is the new value).
What you have at the end is the execution database, a trace of what your program did; you can interrogate the database, go wherever you want in it, even backward (which is why it is possible to "execute" something backward in TTD) but remember: the execution has already happened when you are using TTD, you are just 'browsing' through the execution database.
You are not allowed to change anything in the database, because doing so would impact the remaining of the program execution and, as the program execution has already been made, the debugger would have not mean to execute the new changes.
side note: there are some "debuggers" (more exactly proof of concept tools) that allows this kind of execution (record a trace, and then change the trace), in this case the execution is a mix between symbolic and what is called concolic execution. It is still an open problem in computer science as it leads quickly to combinatoric "explosion" due to all the cascading effects instructions generates.

How the UNDO and REDO feature in any TEXT EDITOR is implemented? [duplicate]

Part of my project is to write a text editor that is used for typing some rules, compiling my application and running it. Writing compiler was end and release beta version. In the final version we must add undo and redo to the text editor. I use a file and save it periodically for the text editor. How to design undo and redo to my text editor? What is changed in the structure of persistent of file?
You can model your actions as commands, that you keep in two stacks. One for undo, another for redo. You can compose your commands to create more high-level commands, like when you want to undo the actions of a macro, for example; or if you want to group individual keystrokes of a single word, or phrase, in one action.
Each action in your editor (or a redo action) generates a new undo command that goes into the undo stack (and also clears the redo stack). Each undo action generates the corresponding redo command that goes into the redo stack.
You can also, as mentioned in the comments by derekerdmann, combine both undo and redo commands into one type of command, that knows how to undo and redo its action.
There are basically two good ways to go about it:
the "Command" design pattern
using only OO over immutable objects, where everything is just immutable objects made of immutable objects made themselves of immutable objects (this is less common but wonderfully elegant when done correctly)
The advantage of using OO over immutable objects over the naive command or the naive undo/redo is that you don't need to think much about it: no need to "undo" the effect of an action and no need to "replay" all the commands. All you need is a pointer to a huge list of immutable objects.
Because objects are immutable all the "states" can be incredibly lightweight because you can cache/reuse most objects in any state.
"OO over immutable objects" is a pure jewel. Probably not gonna become mainstream before another 10 years that said ; )
P.S: doing OO over immutable objects also amazingly simplifies concurrent programming.
If you don't want anything fancy, you can just add an UndoManager. Your Document will fire an UndoableEdit every time you add or remove text. To undo and redo each change, simply call those methods in UndoManager.
The downside of this is UndoManager adds a new edit each time the user types something in, so typing "apple" will leave you with 5 edits, undoable one at a time. For my text editor, I wrote a wrapper for edits that stores the time it was made in addition to text change and offset, as well as an UndoableEditListener that concatenates new edits to previous ones if there is only a short period of time between them (0.5 seconds works well for me).
This works well for general editting, but causes problems when a massive replace is done. If you had a document with 5000 instances of "apple" and you wanted to replace this with "orange", you'd end up with 5000 edits all storing "apple", "orange" and an offset. To lower the amount of memory used, I've treated this as a separate case to ordinary edits and am instead storing "apple", "orange" and an array of 5000 offsets. I haven't gotten around to applying this yet, but I know that it'll cause some headaches when multiple strings match the search condition (eg. case insensitive search, regex search).
Wow, what a conicidence - I have literally in the last hour implemented undo/redo in my WYSIWYG text editor:
The basic idea is to either save the entire contents of the text editor in an array, or the difference between the last edit.
Update this array at significant points, i.e. every few character (check the length of the content each keypress, if its more than say 20 characters different then make a save point). Also at changes in styling (if rich text), adding images (if it allows this), pasting text, etc. You also need a pointer(just an int variable) to point at which item in the array is the current state of the editor)
Make the array have a set length. Each time you add a save point, add it to the start of the array, and move all of the other data points down by one. (the last item in the array will be forgotten once you have so many save points)
When the user presses the undo button, check to see if the current contents of the editor are the same as the latest save (if they are not, then the user has made changes since the last save point, so save the current contents of the editor (so it can be redo-ed), make the editor equal to the last save point, and make the pointer variable = 1 (2nd item in array ). If they are they same, then no changes have been made since the last save point, so you need to undo to the point before that. To do this, increment the pointer value + 1, and make the contents of the editor = the value of pointer.
To redo simply decrease the pointer value by 1 and load the contents of the array (make sure to check if you have reached the end of the array).
If the user makes edits after undoing, then move the pointed value array cell up to cell 0, and move the rest up by the same amount (you dont want to redo to other stuff once they've made different edits).
One other major catch point - make sure you only add a save point if the contents of the text editor have actually changed (otherwise you get duplicate save points and it will seem like undo is not doing anything to the user.
I can't help you with java specifics, but I'm happy to answer any other questions you have,
Nico
You can do it in two ways:
keep a list of editor states and a pointer in the list; undo moves the pointer back and restores the state there, redo moves forward instead, doing something throws away everything beyond the pointer and inserts the state as the new top element;
do not keep states, but actions, which requires that for every action you have a counteraction to undo the effects of that action
In my (diagram) editor, there are four levels of state changes:
action fragments: these are part of a larger action and not separately undoable or redoable
(e.g. moving the mouse)
actions: one or more action fragments that form a meaningful change which can be undone or redone,
but which are not reflected in the edited document as changed on disk
(e.g. selecting elements)
document changes: one or more actions that change the edited document as it would be saved to disk
(e.g. changing, adding or deleting elements)
document saves: the present state of the document is explicitly saved to disk - at this point my editor throws away the undo history, so you can't undo past a save
This is a job for the command pattern.
Here is a snippet that shows how SWT supports Undo/Redo operations. Take it as practical example (or use it directly, if your editor is based on SWT):
SWT Undo Redo
Read a book Design Patterns: Elements of Reusable Object-Oriented Software. As far as I remember, there is a pretty good example.

Can a read() by one process see a partial write() by another?

If one process does a write() of size (and alignment) S (e.g. 8KB), then is it possible for another process to do a read (also of size and alignment S and the same file) that sees a mix of old and new data?
The writing process adds a checksum to each data block, and I'd like to know whether I can use a reading process to verify the checksums in the background. If the reader can see a partial write, then it will falsely indicate corruption.
What standards or documents apply here? Is there a portable way to avoid problems here, preferably without introducing lots of locking?
When a function is guaranteed to complete without there being any chance of any other process/thread/anything seeing things in a half finished state, it's said to be atomic. It either has or hasn't happened, there is no part way. While I can't speak to Windows, there are very few file operations in POSIX (which is what Linux/BSD/etc attempt to stick to) that are guaranteed to be atomic. Reading and writing are not guaranteed to be atomic.
While it would be pretty unlikely for you to write 2 bytes to a file and another process only see one of those bytes written, if by dumb luck your write straddled two different pages in memory and the VM system had to do something to prepare the second page, it's possible you'd see one byte without the other in a second process. Usually if things are page aligned in your file, they will be in memory, but again you can't rely on that.
Here's a list someone made of what is atomic in POSIX, which is pretty short, and I can't vouch for it's authenticity. (I can't think of why unlink isn't listed, for example).
I'd also caution you against testing what appears to work and running with it, the moment you start accessing files over a network file system (NFS on Unix, or SMB mounts in Windows) a lot of things that seemed to be atomic before no longer are.
If you want to have a second process calculating checksums while a first process is writing the file, you may want to open a pipe between the two and have the first process write a copy of everything down the pipe to the checksumming process. That may be faster than dealing with locking.

PowerBuilder 12.1 production performance issues causing asynchrony?

We have a legacy PowerBuilder 12.1 Classic application with an Oracle 11g back end, and are experiencing performance issues in production that we cannot reproduce in our test environments.
The window in question has shared grid/freeform DataWindows and buttons to open other response windows, which when closed cause the grid to re-retrieve.
The grid has a very expensive query behind it, several columns receive their values from function calls with some very intense SQL within, however it still runs within a couple seconds, even in production.
The only consistency in when the errors occur is that it seems to be more likely if they attempt to navigate to the other windows quickly. The buttons that open said windows are assuming that a certain instance variable is set with the appropriate value from the row in focus in the grid. However, in this scenario, the instance variable has not yet been set, even though it looks like the row focus change has occurred. This is causing null reference exceptions that shouldn't be possible.
The end users' network connectivity is often sluggish, and their hardware isn't any less capable than ours. I want to blame the network, but I attempted to reproduce this myself in development by intentionally slowing down the SQL so that I could attempt to click a button, however everything happened as I expected: clicking the button didn't happen until after retrieve and all the other events finished.
My gut tells me that for some reason things aren't running synchronously when they should, and the only factor I can imagine is the speed of the SQL, whether from the query being slow, or the network being slow, but when I tried reproducing that effect things still happened in the proper sequence. The only suspect code is that the datawindow ancestor posts a user event called ue_post_rfc from rowfocuschanged, and this event does a Yield(). ue_post_rfc is where code goes instead of rowfocuschanged.
Is there any way Yield() would cause these problems, without manifesting itself in test environments, even when SQL is artificially slowed?
While your message may not give enough information to give you a recipe to solve your problem, it does give me a hint towards a common point of hard-to-diagnose failures that I see often in PowerBuilder systems.
The sequence of development events goes something like this
Developer develops code where there is a dependence on one event firing before another event, often a dependence through instance or global variables
This event sequence has been something the developer has observed, but isn't documented as a guaranteed sequence (like the AcceptText() sequence or the Update() sequence are documented)
I find this a lot with posted events, and I'm not talking about event and post-event where post-event is posted from event, but more like between post-ItemChanged and post-GetFocus
Something changes the sequence of events, breaking the code. Things that I've seen change non-guaranteed sequences of events include:
PowerBuilder version change
Operating system change
Hardware change
The application running with other applications taxing the system resources
Whoever is now in charge of solving this, has no clue what is going on or how to deal with it, so they start peppering the code with Yield() statements (I've literally seen comments beside a Yield() that said "I don't know why this works, but it solves problem X")
Note that Yield() allows any and all events in the message queue to be processed, while this developer really wants only one particular event to get through
Also note that the commonly-seen-in-my-career DO ... LOOP UNTIL (NOT Yield()) could loop infinitely on a heavily loaded system
Something happens to change the event sequence again
Now when the Yield() occurs, there is a different sequence of messages in the queue to be processed, and not the message the developer had wanted to be processed
Things start failing again
My advice to get rid of this problem (if this is your problem) is to either:
Get rid of the cross-event dependence
Get rid of event sequence assumptions
Manage the event sequence yourself
Good luck,
Terry
P.S. Here's a couple of quotes from your question that make me think of Yield() (not that I don't love the opportunity to jump all over Yield() grin)
The only consistency in when the errors occur is that it seems to be
more likely if they attempt to navigate to the other windows quickly.
Seen this when the user tries to initiate (let's say for example) two actions very quickly. If the script from the first action contains a Yield(), the script from the second action will both start and finish before the first action finishes. This can be true of any combination of user actions (e.g. button clicks, menu clicks, tabs, window closings... you coded with the possibility that the window isn't there anymore after the Yield() was done, right? If not, join the 99% of those that code Yield(), don't, and live dangerously) and system events (e.g. GetFocus, Deactivate, Timer)
My gut tells me that for some reason things aren't running
synchronously when they should
You're right. PowerBuilder (unless you force it) runs synchronously. However, if one event is starting before another finishes (see above), then you're going to get behaviours that look like asynchronous behaviours.
There's nothing definitive in what you've said, but you did ask about Yield(). The really kicker to nail this down is if you could reproduce this with a PBDEBUG trace; you'd see which event(s) is(are) surprising you. However, the amount that PBDEBUG slows things down affects event sequences and queuing, which may or may not be helpful.

Implementation of Unsaved Changes Detection

It seems like three ways to approach detecting unsaved changes in a text/image/data file might be to:
Update a boolean flag every time the user makes a change or saves, which would result in a lot of unnecessary updates.
Keep a cached copy of the original file and diff the two every time a save operation needs to be checked.
Keep a stack of all past operations and push/pop operations as needed, resulting in a lot of extra memory usage.
In general, how do commercial applications detect whether unsaved changes exist and what are the advantages/disadvantages of each approach? I ran into this issue while writing a custom application that has special saving behavior and would like to know if there is a known best practice.
As long as you need an undo/redo system, you need that stack of past operations. To detect in wich state the document is, an item of the stack is set to be the 'saved state'. Current stack node is not that item, the document is changed.
You can see an example of this in Qt QUndoStack( http://doc.qt.nokia.com/stable/qundostack.html ) and its isClean() and setClean()
For proposition 1, updating a boolean is not something problematic and take little time.
This depends on the features you want and the size/format of the files, I guess.
The first option is the simplest, and it gives you just what you want with minial overhead.
The second option has the advantage that you can detect when changes have been manually reverted, so that there is no real change after all (although that probably doesn't happen all too often). On the other hand it is much more costly to make a diff just to check if anything was modified. You probably don't want to do that everytime the user presses a key.
The third option gives the ability to provide an undo-history. You could limit the number of items in that history by grouping changes together that were made consecutively (without moving the cursor in between), or something like that.

Resources