Implementing imposters in three.js - three.js

Is there a way to do imposters in three.js - or is that not going to help with performance at all for a scene with >10,000 objects most of them being the same model?

If you have thousands of the same object (with variations of position/size/rotation and perhaps color) then your first priority should be to make sure you don't have thousands of GPU draw call. A couple options:
(a) static batching — apply the objects' positions to their geometries (geometry.applyMatrix( mesh.matrixWorld )) then merge them with THREE.BufferGeometryUtils.mergeBufferGeometries()). The result can be drawn as a single large mesh. This takes up more memory, but is easier to set up.
(b) gpu instancing — more memory-efficient, but harder to do. See https://threejs.org/examples/webgl_interactive_instances_gpu.html or https://www.npmjs.com/package/three-instanced-mesh.
Once you've reduced the number of draw calls, profile the application again. If performance is still poor, you can reduce the total vertex count with impostors (or, really, just simpler meshes...). threejs does not generate impostors for you, per Spherical Impostors in three.js.

Related

Marchingcube planet vegetation; Large amount of meshes performance

I would like to inquire some insights into rendering a large amount of meshes with the best performance.
I'm working on generative mine-able planets incorporating marching cube chunked terrain. Currently I'm trying to add vegetation/rocks to spruce up the planet surfaces (get it?). I am using the actual chunk loading to (next to the terrain) also load smaller rocks and some grass stuff. That runs pretty well. I am having issues with tree's and boulders (visible on the entire planet surface but LODed, obviously).
Testing different methods have lead me on the road of;
Custom shaders with material clipping based on camera distance; Works okay for about half a million trees made from 2 perpendicular planes (merged into one single bufferGeometry). But those 'models' are not good enough.
THREE.LOD's; Which sucks up fps like crazy, to slow for large amounts of meshes.
THREE.InstancedMesh's; Works pretty well, however I'd have to disable frustumCulling, since the originpoint of the vegetation is not always on screen. Which makes it inefficient.
THREE.InstancedGeometry combined with the custom clipping shaders; I had high hopes for this, it gives the best performance while using actual models. But it still eats up half of the frameRate. The vertexshader still has to process all the vertices to determine if it is within clipping range. Also the same frustumCulling issue applies.
Material.clippingPlanes? Combined with InstancedMeshes; This is what I'm trying now, did not have any luck with it, still trying to figure out exactly how that works..
Does anyone have experience with rendering large amounts of meshes or has some advice for me? Is there a technique I do not yet know about?
Would it help to split up the trees in multiple InstancedMeshes? Would the clippingPlanes give me better performance?

Precalculating OpenGL model transformations for static world space

I'm working on an OpenGL visualisation for navigating a 3D dataset. Briefly, the visualisation takes in a large (~1 million data points) array of matrices, which are then eigendecomposed and visualised as ellipsoids.
I have found that performance improves significantly when I calculate ellipsoid vertex transformations "up-front" (i.e. calculate all model transformations once only on the CPU), rather than in shaders (where the model transformations have to be calculated for each draw). For scene navigation/lighting etc., view and projection tranformations are calculated as normal as uniforms passed to the relevant shaders.
The result of this approach is the program taking longer to initialise (due to the CPU being tied up calculating all the model transformations), but significantly higher frame rates.
I understand from this, that it is common to decompose matrices to avoid unnecessary shader computations, however I haven't come across anything describing this practice of completely pre-calculating the world space.
I understand that this approach is only appropriate for my narrow usecase (i.e. where the scene is static, meaning there will never be a situation where a vertex's position in world space will change while the program is running). Apart from that, are there any significant reasons that I should avoid doing this?
It's a common optimization to remove redundant transformations from static objects. Your objects are static in the world, so you've collapsed all the redundant transformations right up to the root of your scene, which is not a problem.
Having said that, the performance gain you're seeing is probably not coming from the cost of doing the model transform in the shader, but from passing that transform to the shader for each object. You have not said much about how you organize the ellipsoids, but if you are updating a program with the model matrix uniform and issuing a DrawElements call for each ellipsoid, that is very slow indeed. Even doing something more exotic -- like using instances and passing each transform in a VBO -- you would still have the overhead of updating them,which you can now avoid. If you are not doing this already, you can group your ellipsoid vertices into large arrays and draw them with only a few DrawElements calls.

Dividing a sphere into multiple texture

I have a sphere with texture of earth that I generate on the fly with the canvas element from an SVG file and manipulate it.
The texture size is 16384x8192 , and less than this - it's look blurry on close zoom.
But this is a huge texture size and causing memory problems... (But it's look very good when it is working)
I think a better approach would be to split the sphere into 32 separated textures, each in size of 2048x2048
A few questions:
How can I split the sphere and assign the right textures?
Is this approach better in terms of memory and performance from a single huge texture?
Is there a better solution?
Thanks
You could subdivide a cube, and cubemap this.
Instead of having one texture per face, you would have NxN textures. 32 doesn't sound like a good number, but 24 for example does, (6x2x2).
You will still use the same amount of memory. If the shape actually needs to be spherical you can further subdivide the segments and normalize the entire shape (spherify it).
You probably cant even use such a big texture anyway.
notice the top sphere (cubemap, ignore isocube):
Typically, that's not something you'd do programmatically, but in a 3D program like Blender or 3D max. It involves some trivial mesh separation, UV mapping and material assignment. One other approach that's worth experimenting with would be to have multiple materials but only one mesh - you'd still get (somewhat) progressive loading. BUT
Are you sure you'd be better off with "chunks" loading sequentially rather than one big texture taking a huge amount of time? Sure, it'll improve a bit in terms of timeouts and caching, but the tradeoff is having big chunks of your mesh be textureless, which is noticeable and unasthetic.
There are a few approaches that would mitigate your problem. First, it's important to understand that texture loading optimization techniques - while common in game engines - aren't really part of threejs or what it's built for. You'll never get the near-seamless LODs or GPU optimization techniques that you'll get with UE4 or Unity. Furthermore webGL - while having made many strides over the past decade - is not ideal for handling vast texture sizes, not at the GPU level (since it's based on OpenGL ES, suited primarily for mobile devices) and certainly not at the caching level - we're still dealing with broswers here. You won't find a lot of webGL work done with vast textures of the dimensions you refer to.
Having said that,
A. A loader will let you do other things while your textures are loading so your user isn't staring at an 'unfinished mesh'. It lets you be pretty clever with dynamic loading times and UX design. Additionally, take a look at this gist to give you an idea for what a progressive texture loader could look like. A much more involved technique, that's JPEG specific, can be found here but I wouldn't approach it unless you're comfortable with low-level graphics programming.
B. Threejs does have a basic implementation of LOD although I haven't tinkered with it myself and am not sure it's useful for textures; that said, the basic premise to inquire into is whether you can load progressively higher-resolution files on a per-need basis, just like Google Earth does it for example.
C. This is out of the scope of your question - but I'd look into what happens under the hood in Unity's webgl export (which is based on threejs), and what kind of clever tricks are being employed there for similar purposes.
Finally, does your project have to be in webgl? For something ambitious and demanding, sometimes "proper" openGL / DX makes much more sense.

Very fast boolean difference between two meshes

Let's say I have a static object and a movable object which can be moved and rotated, what is the best way to very quickly calculate the difference of those two meshes?
Precision here is not so important, speed is though, since I have to use it in the update phase of the main loop.
Maybe, given the strict time limit, modifying the static object's vertices and triangles directly is to be preferred. Should voxels be preferred here instead?
EDIT: The use case is an interactive viewer of a wood panel (parallelepiped) and a milling tool (a revolved contour, some like these).
The milling tool can be rotated and can work oriented at varying degrees (5 axes).
EDIT 2: The milling tool may not pierce the wood.
EDIT 3: The panel can be as large as 6000x2000mm and the milling tool can be as little as 3x3mm.
If you need the best possible performance then the generic CSG approach may be too slow for you (but still depending on meshes and target hardware).
You may try to find some specialized algorithm, coded for your specific meshes. Let's say you have two cubes - one is a 'wall' and second is a 'window' - then it's much easier/faster to compute resulting mesh with your custom code, than full CSG. Unfortunately you don't say anything about your meshes.
You may also try to make it a 2D problem, use some simplified meshes to compute the result that will 'look like expected'.
If the movement of your meshes is somehow limited you may be able to precompute full or partial results for different mesh combinations to use at runtime.
You may use some space partitioning like BSP or Octrees to divide your meshes during precomputing stage. This way you could split one big problem into many smaller ones that may be faster to compute or at least to make the solution multi-threaded.
You've said about voxels - if you're fine with their look and limits you may voxelize both meshes and just read and mix two voxel values, instead of one. Then you would triangulate it using algorithm like Marching Cubes.
Those are all just some general ideas but we'll need better info to help you more.
EDIT:
With your description it looks like you're modeling some bas-relief, so you may use Relief Mapping to fake this effect. It's based on a height map stored as a texture, so you'd need to just update few pixels of the texture and render a plane. It should be quite fast compared to other approaches, the downside is that it's based on height map, so you can't get shapes that Tee Slot or Dovetail cutter would create.
If you want the real geometry then I'd start from a simple plane as your panel (don't need full 3D yet, just a front surface) and divide it with a 2D grid. The grid element should be slightly bigger than the drill size and every element is a separate mesh. In the frame update you'd cut one, or at most 4 elements that are touched with a drill. Thanks to this grid all your cutting operations will be run with very simple mesh so they may work with your intended speed. You can also cut all current elements in separate threads. After the cutting is done you'll upload to the GPU only currently modified elements so you may end up with quite complex mesh but small modifications per frame.

DirectX9 - Efficiently Drawing Sprites

I'm trying to create a platformer game, and I am taking various sprite blocks, and piecing them together in order to draw the level. This requires drawing a large number of sprites on the screen every single frame. A good computer has no problem handling drawing all the sprites, but it starts to impact performance on older computers. Since this is NOT a big game, I want it to be able to run on almost any computer. Right now, I am using the following DirectX function to draw my sprites:
D3DXVECTOR3 center(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 position(static_cast<float>(x), static_cast<float>(y), z);
(my LPD3DXSPRITE object)->Draw((sprite texture pointer), NULL, &center, &position, D3DCOLOR_ARGB(a, r, g, b));
Is there a more efficient way to draw these pictures on the screen? Is there a way that I can use less complex picture files (I'm using regular png's right now) to speed things up?
To sum it up: What is the most performance friendly way to draw sprites in DirectX? thanks!
The ID3DXSPRITE interface you are using is already pretty efficient. Make sure all your sprite draw calls happen in one batch if possible between the sprite begin and end calls. This allows the sprite interface to arrange the draws in the most efficient way.
For extra performance you can load multiple smaller textures in to one larger texture and use texture coordinates to get them out. This makes it so textures don't have to be swapped as frequently. See:
http://nexe.gamedev.net/directknowledge/default.asp?p=ID3DXSprite
The file type you are using for the textures does not matter as long as they are are preloaded into textures. Make sure you load them all in to textures once when the game/level is loading. Once you have loaded them in to textures it does not matter what format they were originally in.
If you still are not getting the performance you want, try using PIX to profile your application and find where the bottlenecks really are.
Edit:
This is too long to fit in a comment, so I will edit this post.
When I say swapping textures I mean binding them to a texture stage with SetTexture. Each time SetTexture is called there is a small performance hit as it changes the state of the texture stage. Normally this delay is fairly small, but can be bad if DirectX has to pull the texture from system memory to video memory.
ID3DXsprite will reorder the draws that are between begin and end calls for you. This means SetTexture will typically only be called once for each texture regardless of the order you draw them in.
It is often worth loading small textures into a large one. For example if it were possible to fit all small textures in to one large one, then the texture stage could just stay bound to that texture for all draws. Normally this will give a noticeable improvement, but testing is the only way to know for sure how much it will help. It would look terrible, but you could just throw in any large texture and pretend it is the combined one to test what performance difference there would be.
I agree with dschaeffer, but would like to add that if you are using a large number different textures, it may better to smush them together on a single (or few) larger textures and adjust the texture coordinates for different sprites accordingly. Texturing state changes cost a lot and this may speed things up on older systems.

Resources