I get a different quicksort results from the solution - algorithm

The problem is to quicksort the word ELECTRONIC. I am working through every line manually, and the solution given is stepped. After the first step I have a different state from the solution and don't understand why.
I choose the pivot from the median of ETC (positions 0,4 and 9) and select E. This pivot is swapped with the last position, 9, and gives:
0123456789
CLECTRONIE
I increment i from C on the left and decrement j from I on the right and eventually swap positions 1(L) and 4(C) giving
0123456789
CCELTRONIE
Continuing to increment and decrement i and j respectively, the eventually cross with i at position 3, L, and this is swapped with the pivot at position 9 giving:
0123456789
CCEETRONIL
Now with the pivot at position 3 I thought the partition would be
CCE |E| TRONIL
but the solution I have states:
Quicksort ELECTRONIC
choose pivot: median(E,T,C)=E
partition using E: ECC|E|LTRONI
...
I understand the letters in Sl and Sr are the same, but I think the order is important. Can anyone identify where I have gone wrong, or how the solution gets this state please? Anything is appreciated.

Your partition achieves the main goal - left part contains lesser (or equal) elements, right part contains greater elements. Partition is finished. Task
(for current stage) is completed successfully.
Order of elements in these parts depends on partition implementation (there are different schemes) and does not influence on sorting correctness and speed.

Related

Custom heuristic in ECLiPSe CLP

Consider the following puzzle:
A cell is either marked or unmarked. Numbers along the right and bottom side of the puzzle denote the total sum for a certain row or column. Cells contribute (if marked) to the sum in its row and column: a cell in position (i,j) contributes i to the column sum and j to the row sum. For example, in the first row in the picture above, the 1st, 2nd and 5th cell are marked. These contribute 1 + 2 + 5 to the row sum (thus totalling 8), and 1 each to their column sum.
I have a solver in ECLiPSe CLP for this puzzle and I am tyring to write a custom heuristic for it.
The easiest cells to start with, I think, are those for which the column and row hint are as low as possible. In general, the lower N is, the fewer possibilities exist to write N as a sum of natural numbers between 1 and N. In the context of this puzzle it means the cell with the lowest column hint + row hint has lowest odds of being wrong, so less backtracking.
In the implementation I have a NxN array that represents the board, and two lists of size N that represent the hints. (The numbers to the side and on the bottom.)
I see two options:
Write a custom selection predicate for search/6. However, if I understand correctly, I can only give it 2 parameters. There's no way to calculate the row + column sum for a given variable then, because I need to be able to pass it to the predicate. I need 4 parameters.
Ignore search/6 and write an own labelling method. That's how I have
it right now, see the code below.
It takes the board (the NxN array containing all decision variables), both lists of hints and returns a list containing all variables, now sorted according to their row + column sum.
However, this possibly cannot get any more cumbersome, as you can see. To be able to sort, I need to attach the sum to each variable, but in order to do that, I first need to convert it to a term that also contains the coordinates of said variable, so that I convert back to the variable as soon as sorting is done...
lowest_hints_first(Board,RowArr,ColArr,Out) :-
dim(Board,[N,N]),
dim(OutBoard,[N,N]),
( multifor([I,J],[1,1],[N,N]), foreach(Term,Terms), param(RowArr,ColArr) do
RowHint is ColArr[I],
ColHint is RowArr[J],
TotalSum is RowHint + ColHint,
Term = field(I,J,TotalSum)
),
sort(3,<,Terms,SortedTerms), % Sort based on TotalSum
terms_to_vars(SortedTerms,Board,Out), % Convert fields back to vars...
( foreach(Var,Out) do
indomain(Var,max)
).
terms_to_vars([],_,[]).
terms_to_vars([field(I,J,TotalSum)|RestTerms],Vars,[Out|RestOut]) :-
terms_to_vars(RestTerms,Vars,RestOut),
Out is Vars[I,J].
In the end this heuristic is barely faster than input_order. I suspect its due to the awful way it's implemented. Any ideas on how to do it better? Or is my feeling that this heuristic should be a huge improvement incorrect?
I see you are already happy with the improvement suggested by Joachim; however, as you ask for further improvements of your heuristic, consider that there is only one way to get 0 as a sum, as well as there is only one way to get 15.
There is only one way to get 1 and 14, 2 and 13; two ways to get 3 and 12.
In general, if you have K ways to get sum N, you also have K ways to get 15-N.
So the difficult sums are not the large ones, they are the middle ones.

Quick sorting algorithm states using middle element as pivot

I need help understanding exactly how the quick sort algorithm works. I've been watching teaching videos and still fail to really grasp it completely.
I have an unsorted list: 1, 2, 9, 5, 6, 4, 7, 8, 3
And I have to quick sort it using 6 as the pivot.
I need to see the state of the list after each partition procedure.
My main problem is understanding what the order of the elements are before and after the pivot. So in this case if we made 6 the pivot, I know the numbers 1 - 5 will be before 6 and 7 - 9 will go after that. But what will the order of the numbers 1 - 5 be and 7 - 9 be in the first partition given my list above?
Here is the partition algorithm that I want to use (bear in my I'm using the middle element as my initial pivot):
Determine the pivot, and swap the pivot with the first element of the list.
Suppose that the index smallIndex points to the last element smaller than the pivot. The index smallIndex is initialized to the first element of the list.
For the remaining elements in the list (starting at the second element)
If the current element is smaller than the pivot
a. Increment smallIndex
b. Swap the current element with the array element pointed to by smallIndex.
Swap the first element, that is the pivot, with the array element pointed to by smallIndex.
It would be amazing if anyone could show the list after each single little change that occurs to the list in the algorithm.
It doesn't matter.
All that matters - all that the partitioning process asserts - is that, after it has been run, there are no values on the left-hand side of the center point that emerges that are greater than the pivot and that there are no values on the right-hand side that are less than the pivot value.
The internal order of the two partitions is then handled in the subsequent recursive calls for each half.

Quicksort: pivot position after one partition

I am reading about quicksort, looking at different implementations and I am trying to wrap my head around something.
In this implementation (which of course works), the pivot is chosen as the middle element and then the left and right pointer move to the right and left accordingly, swapping elements to partition around the pivot.
I was trying the array [4, 3, 2, 6, 8, 1, 0].
On the first partition, pivot is 6 and all the left elements are already smaller than 6, so the left pointer will stop at the pivot. On the right side, we will swap 0 with 6, and then 1 and 8, so at the end of the first iteration, the array will look like:
[4, 3, 2, 0, 1, 8, 6].
However, I was under the impression that after each iteration in quicksort, the pivot ends up in its rightful place, so here it should end up in position 5 of the array.
So, it is possible (and ok) that the pivot doesn't end up in its correct iteration or is it something obvious I am missing?
There are many possible variations of the quicksort algorithm. In this one it is OK for the pivot to be not in its correct place in its iteration.
The defining feature of every variation of the quicksort algorithm is that after the partition step, we have a part in the beginning of the array, where all the elements are less or equal to pivot, and a non-overlapping part in the end of the array where all the elements are greater or equal to pivot. There may also be a part between them, where every element is equal to pivot. This layout ensures, that after we sort the left part and the right part with recursive calls, and leave the middle part intact, the whole array will be sorted.
Notice, that in general elements equal to pivot may go to any part of the array. A good implementation of quicksort, that avoids quadratic time for the most obvious case, i.e. all equal elements, must spread elements equal to pivot between parts rationally.
Possible variants include:
The middle part includes only 1 element: the pivot. In that case pivot takes its final place in the array after the partition and won't be used in the recursive calls. That's what you meant by pivot taking its place in its iteration. For this approach the good implementation must move about half the elements equal to pivot to the left part and the other half to the right part, otherwise we would have quadratic time for an array with all equal elements.
There is no middle part. Pivot and all elements equal to it are spread between the left and the right part. That's what the implementation you linked does. Once again, in this approach about half of the elements equal to pivot should go to the left part, and the other half to the right part. This can also be mixed with the first variation, depending on whether we are sorting an array with an odd or an even number of elements.
Every element equal to pivot goes to the middle part. There are no elements equal to pivot in either left or right part. That's quite efficient and that's the example Wikipedia gives for solving the all-elements-equal problem. Arrays with all elements equal to each other are sorted in linear time in that case.
Thus, the correct and efficient implementation of quicksort is quite tricky (there is also a problem of choosing a good pivot, for which several approaches with different tradeoffs exist as well; or an optimisation of switching to another non-recursive sorting algorithm for smaller sub-array sizes).
Also, it seems that the implementation you linked to, may do recursive calls on overlapping subarrays:
if (i <= j) {
exchange(i, j);
i++;
j--;
}
For example, when i is equal to j, those elements will be swapped, and i will become greater than j by 2. After that 3 elements will overlap between the ranges of the following recursive calls. The code still seems to work correctly though.

picking element game

This is a simple game:
There is a set, A={a1,...,an}, the opponents can choose one of the first or last elements of set, and at the end the one who collect bigger numbers wins. Now say each participants dose his best, what I need to do is write a Dynamic algorithm to estimate their score.
any idea or clue is truly appreciated.
Here's a hint: to write a dynamic programming algorithm, you typically need a recurrence. Given
A={a1,...,an}
The recurrence would look something like this
f(A)= max( f({a1,...,a_n-1}) , f({a2,...,a_n}) )
Actually the recurrence relation given by dfb may not lead to right answer
as it is not leading to the right sub-optimal structure !
Assume the Player A begins the game :
the structure of problem for him is [a1,a2,...an]
After choosing an element , either a1 or an , its player B's turn to play , and then after that move it is player A's move.
So after two moves , Player A's turn will come again and this will be the right sub-problem for him .The right recurrence relation will be
Suppose from i to j elements are left :
A(i,j)= max(min( A(i+1,j-1),A(i+2,j)+a[i] ), min(A(i,j-2),A(i+1,j-1))+a[j])
Refer to the following link :
http://people.csail.mit.edu/bdean/6.046/dp/
EXAMPLE CODE
Here is Python code to compute the optimal score for first and second players.
A=[3,1,1,3,1,1,3]
cache={}
def go(a,b):
"""Find greatest difference between player 1 coins and player 2 coins when choosing from A[a:b]"""
if a==b: return 0 # no stacks left
if a==b-1: return A[a] # only one stack left
key=a,b
if key in cache:
return cache[key]
v=A[a]-go(a+1,b) # taking first stack
v=max(v,A[b-1]-go(a,b-1)) # taking last stack
cache[key]=v
return v
v = go(0,len(A))
n=sum(A)
print (n+v)/2,(n-v)/2
COUNTEREXAMPLE
Note that the code includes a counter example to one of the other answers to this question.
Consider the case [3,1,1,3,1,1,3].
By symmetry, the first players move always leaves the pattern [1,1,3,1,1,3].
For this the sum of even elements is 1+3+1=5, while the sum of odd is 1+1+3=5, so the argument is that from this position the second player will always win 5, and the first player will always win 5, so the first player will win (as he gets 5 in addition to the 3 from the first move).
However, this logic is flawed because the second player can actually get more.
First player takes 3, leaves [1,1,3,1,1,3] (only choice by symmetry)
Second player takes 3, leaves [1,1,3,1,1]
First player takes 1, leaves [1,3,1,1] (only choice by symmetry)
Second player takes 1, leaves [1,3,1]
First player takes 1, leaves [3,1] (only choice by symmetry)
Second player takes 3, leaves [1]
First player takes 1
So overall first player gets 3+1+1+1=6, while second gets 3+1+3=7 and second player wins.
The flaw is that although it is true that the second player can play such that they will win all even or all odd positions, this is not optimal play and they can actually do better than this in some cases.
Actually you do not need dynamic programming, because it is easy to find an explicit solution for the game above.
Case n is even or n = 1.
The second player to move will always lose.
Case n odd and n > 1.
The second player has a winning strategy iff one of the following 2 scenarios happen:
The elements with even index have bigger sum than all the elements with odd index
All odd elements except the last have bigger sum than all the remainings AND
All odd elements except the first have bigger sum than all the remainings.
Proof sketch:
Case n is even or n = 1: Let Sodd and Seven be the sum of all elements with even/odd indexes. Assume that Sodd > Seven, same argument hold otherwise. The first player has a winning strategy, since he can play in such a way that he will get all odd indexed items.
The case n is odd and n > 1 can also be resolved directly. In fact the first player has two options, he can get the first or last element of the set. Of the remaining elements, partition them the two subsets with odd and even indexes; by the argument above, the second player is going to take the subset with largest sum. If you expand the tree game you will end up with the statement above.

Stability of quicksort partitioning approach

Does the following Quicksort partitioning algorithm result in a stable sort (i.e. does it maintain the relative position of elements with equal values):
partition(A,p,r)
{
x=A[r];
i=p-1;
for j=p to r-1
if(A[j]<=x)
i++;
exchange(A[i],A[j])
exchange(A[i+1],A[r]);
return i+1;
}
There is one case in which your partitioning algorithm will make a swap that will change the order of equal values. Here's an image that helps demonstrate how your in-place partitioning algorithm works:
We march through each value with the j index, and if the value we see is less than the partition value, we append it to the light-gray subarray by swapping it with the element that is immediately to the right of the light-gray subarray. The light-gray subarray contains all the elements that are <= the partition value. Now let's look at, say, stage (c) and consider the case in which three 9's are in the beginning of the white zone, followed by a 1. That is, we are about to check whether the 9's are <= the partition value. We look at the first 9 and see that it is not <= 4, so we leave it in place, and march j forward. We look at the next 9 and see that it is not <= 4, so we also leave it in place, and march j forward. We also leave the third 9 in place. Now we look at the 1 and see that it is less than the partition, so we swap it with the first 9. Then to finish the algorithm, we swap the partition value with the value at i+1, which is the second 9. Now we have completed the partition algorithm, and the 9 that was originally third is now first.
Any sort can be converted to a stable sort if you're willing to add a second key. The second key should be something that indicates the original order, such as a sequence number. In your comparison function, if the first keys are equal, use the second key.
A sort is stable when the original order of similar elements doesn't change. Your algorithm isn't stable since it swaps equal elements.
If it didn't, then it still wouldn't be stable:
( 1, 5, 2, 5, 3 )
You have two elements with the sort key "5". If you compare element #2 (5) and #5 (3) for some reason, then the 5 would be swapped with 3, thereby violating the contract of a stable sort. This means that carefully choosing the pivot element doesn't help, you must also make sure that the copying of elements between the partitions never swaps the original order.
Your code looks suspiciously similar to the sample partition function given on wikipedia which isn't stable, so your function probably isn't stable. At the very least you should make sure your pivot point r points to the last position in the array of values equal to A[r].
You can make quicksort stable (I disagree with Matthew Jones there) but not in it's default and quickest (heh) form.
Martin (see the comments) is correct that a quicksort on a linked list where you start with the first element as pivot and append values at the end of the lower and upper sublists as you go through the array. However, quicksort is supposed to work on a simple array rather than a linked list. One of the advantages of quicksort is it's low memory footprint (because everything happens in place). If you're using a linked list you're already incurring a memory overhead for all the pointers to next values etc, and you're swapping those rather than the values.
If you need a stable O(n*log(n)) sort, use mergesort. (The best way to make quicksort stable by the way is to chose a median of random values as the pivot. This is not stable for all elements equivalent, however.)
Quick sort is not stable. Here is the case when its not stable.
5 5 4 8
taking 1st 5 as pivot, we will have following after 1st pass-
4 5 5 8
As you can see order of 5's have been changed. Now if we continue doing sorting it will change the order of 5's in sorted array.
From Wikipedia:
Quicksort is a comparison sort and, in
efficient implementations, is not a
stable sort.
One way to solve this problem is by not taking Last Element of array as Key. Quick sort is randomized algorithm.
Its performance highly depends upon selection of Key. Although algorithm def says we should take last or first element as key, in reality we can select any element as key.
So I tried Median of 3 approach, which says take first ,middle and last element of array. Sorts them and then use middle position as a Key.
So for example my array is {9,6,3,10,15}. So by sorting first, middle and last element it will be {3,6,9,10,15}. Now use 9 as key. So moving key to the end it will be {3,6,15,10,9}.
All we need to take care is what happens if 9 comes more than once. That is key it self comes more than once.
In such cases after selecting key as middle index we need to go through elements between Key to Right end and if any element is found same key i.e. if 9 is found between middle position to the end make that 9 as key.
Now in the region of elements greater than 9 i.e. loop of j if any 9 is found swap it with region of elements less than that is region of i. Your array will be stable sorted.

Resources