kth order statistic in range [i, j] - algorithm

There is a problem but I can't find a efficient algorithm for it.
Problem
Given an array of numbers a[1], ..., a[n], we get queries of the kind:
SELECT(i, j, k): find k-th smallest number in range [i, j] after sorting a[i], a[i+1], ..., a[j]
SET(i, value): perform a[i] = value
Example
Input:
5 5 // n = 5 (size of array), m = 5 (number of query)
5 10 9 6 7
select 2 4 1
select 2 4 2
set 3 12
set 4 15
select 2 4 1
Output:
6
9
10
I think that we can implement this with Merge Sort Tree (Special segment tree). I found this in internet: merge sort tree for range order statistics
but because we can change array value, this algorithm in not efficient.
Is it possible to help me, How can I implement it efficiently?
Thanks.

I don't know about the merge-sort-tree but I can think of different data-structure / algorithm that gives you the desire output in O(n) per query.
Notice solution for this problem depends on the distribution between SET and SELECT queries -> I assume there are more SELECT's so I tried to lower that complexity. If you have more SET's then I would use #miradham answer:
david miradham
SET O(n) O(1)
SELECT O(n) O(nlogn)
Space O(n) O(n)
Both solution are space complexity of O(n).
In your question you used indexes that start from 1 -> I will modify it to start from 0.
Let look at your example: a = array (5, 10, 9, 6, 7). As pre-processing we will create sorted array that contains also the original index of the elements -> b = array(5(0), 6(3), 7(4), 9(2), 10(1)) when the number in bracket is the index in the original array a. This can be done in O(nlogn).
How do we deals with the queries?
SELECT(i, j, k):
let cnt = 1;
for m in b (sorted array)
if m(index) <= i && m(index) <= j // the index is in given range
if (cnt == k)
return k // found the k lowest
else cnt++
This is O(n) as you loop over b
SET(i, value):
Changing a is easy and can be done in O(1). Changing b:
originalValue = a[i] // old value
Add [value(i)] to b as new element // O(logn) as b sorted
Remove [originalValue(i)] from b // b sorted but array implementation may cause O(n)
Total of O(n)
If further explanation is needed feel free to ask. Hope that helps!

Related

Efficient algorithm to calculate the mode of a hidden array

I'm trying to solve the extension to a problem I described in my question: Efficient divide-and-conquer algorithm
For this extension, there is known to be representatives for 3 parties at the event, and there are more members for 1 party attending than for any other. A formal description of the problem can be found below.
You are given an integer n. There is a hidden array A of size n, which contains elements that can take 1 of 3 values. There is a value, let this be m, that appears more often in the array than the other 2 values.
You are allowed queries of the form introduce(i, j), where i≠j, and 1 <= i, j <= n, and you will get a boolean value in return: You will get back 1, if A[i] = A[j], and 0 otherwise.
Output: B ⊆ [1, 2. ... n] where the A-value of every element in B is m.
A brute-force solution to this could calculate B in O(n2) by calling introduce(i, j) on n(n-1) combinations of elements and create 3 lists containing A-indexes of elements for which a 1 was returned when introduce was called on them, returning the list of largest size.
I understand the Boyer–Moore majority vote algorithm but can't find a way to modify it for this problem or find an efficient algorithm to solve it.
Scan for all A[i] = A[0], and make list I[] of all i for which A[i] != A[0]. Then scan for all A[I[j]] = A[I[0]], and so on. Which requires one O(n) scan for each possible value in A[].
[I assume if introduce(i, j) = 1 and introduce(j, k) = 1, then introduce(i, k) = 1 -- so you don't need to check all combinations of elements.]
Of course, this doesn't tell you what 'm' is, it just makes n lists, where n is the number of values, and each list is all the 'i' where A[i] is the same.

Count of divisors of numbers till N in O(N)?

So, we can count divisors of each number from 1 to N in O(NlogN) algorithm with sieve:
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j += i) {
cnt[j]++; //// here cnt[x] means count of divisors of x
}
}
Is there way to reduce it to O(N)?
Thanks in advance.
Here is a simple optimization on #גלעד ברקן's solution. Rather than use sets, use arrays. This is about 10x as fast as the set version.
n = 100
answer = [None for i in range(0, n+1)]
answer[1] = 1
small_factors = [1]
p = 1
while (p < n):
p = p + 1
if answer[p] is None:
print("\n\nPrime: " + str(p))
limit = n / p
new_small_factors = []
for i in small_factors:
j = i
while j <= limit:
new_small_factors.append(j)
answer[j * p] = answer[j] + answer[i]
j = j * p
small_factors = new_small_factors
print("\n\nAnswer: " + str([(k,d) for k,d in enumerate(answer)]))
It is worth noting that this is also a O(n) algorithm for enumerating primes. However with the use of a wheel generated from all of the primes below size log(n)/2 it can create a prime list in time O(n/log(log(n))).
How about this? Start with the prime 2 and keep a list of tuples, (k, d_k), where d_k is the number of divisors of k, starting with (1,1):
for each prime, p (ascending and lower than or equal to n / 2):
for each tuple (k, d_k) in the list:
if k * p > n:
remove the tuple from the list
continue
power = 1
while p * k <= n:
add the tuple to the list if k * p^power <= n / p
k = k * p
output (k, (power + 1) * d_k)
power = power + 1
the next number the output has skipped is the next prime
(since clearly all numbers up to the next prime are
either smaller primes or composites of smaller primes)
The method above also generates the primes, relying on O(n) memory to keep finding the next prime. Having a more efficient, independent stream of primes could allow us to avoid appending any tuples (k, d_k) to the list, where k * next_prime > n, as well as free up all memory holding output greater than n / next_prime.
Python code
Consider the total of those counts, sum(phi(i) for i=1,n). That sum is O(N log N), so any O(N) solution would have to bypass individual counting.
This suggests that any improvement would need to depend on prior results (dynamic programming). We already know that phi(i) is the product of each prime degree plus one. For instance, 12 = 2^2 * 3^1. The degrees are 2 and 1, respective. (2+1)*(1+1) = 6. 12 has 6 divisors: 1, 2, 3, 4, 6, 12.
This "reduces" the question to whether you can leverage the prior knowledge to get an O(1) way to compute the number of divisors directly, without having to count them individually.
Think about the given case ... divisor counts so far include:
1 1
2 2
3 2
4 3
6 4
Is there an O(1) way to get phi(12) = 6 from these figures?
Here is an algorithm that is theoretically better than O(n log(n)) but may be worse for reasonable n. I believe that its running time is O(n lg*(n)) where lg* is the https://en.wikipedia.org/wiki/Iterated_logarithm.
First of all you can find all primes up to n in time O(n) using the Sieve of Atkin. See https://en.wikipedia.org/wiki/Sieve_of_Atkin for details.
Now the idea is that we will build up our list of counts only inserting each count once. We'll go through the prime factors one by one, and insert values for everything with that as the maximum prime number. However in order to do that we need a data structure with the following properties:
We can store a value (specifically the count) at each value.
We can walk the list of inserted values forwards and backwards in O(1).
We can find the last inserted number below i "efficiently".
Insertion should be "efficient".
(Quotes are the parts that are hard to estimate.)
The first is trivial, each slot in our data structure needs a spot for the value. The second can be done with a doubly linked list. The third can be done with a clever variation on a skip-list. The fourth falls out from the first 3.
We can do this with an array of nodes (which do not start out initialized) with the following fields that look like a doubly linked list:
value The answer we are looking for.
prev The last previous value that we have an answer for.
next The next value that we have an answer for.
Now if i is in the list and j is the next value, the skip-list trick will be that we will also fill in prev for the first even after i, the first divisible by 4, divisible by 8 and so on until we reach j. So if i = 81 and j = 96 we would fill in prev for 82, 84, 88 and then 96.
Now suppose that we want to insert a value v at k between an existing i and j. How do we do it? I'll present pseudocode starting with only k known then fill it out for i = 81, j = 96 and k = 90.
k.value := v
for temp in searching down from k for increasing factors of 2:
if temp has a value:
our_prev := temp
break
else if temp has a prev:
our_prev = temp.prev
break
our_next := our_prev.next
our_prev.next := k
k.next := our_next
our_next.prev := k
for temp in searching up from k for increasing factors of 2:
if j <= temp:
break
temp.prev = k
k.prev := our_prev
In our particular example we were willing to search downwards from 90 to 90, 88, 80, 64, 0. But we actually get told that prev is 81 when we get to 88. We would be willing to search up to 90, 92, 96, 128, 256, ... however we just have to set 92.prev 96.prev and we are done.
Now this is a complicated bit of code, but its performance is O(log(k-i) + log(j-k) + 1). Which means that it starts off as O(log(n)) but gets better as more values get filled in.
So how do we initialize this data structure? Well we initialize an array of uninitialized values then set 1.value := 0, 1.next := n+1, and 2.prev := 4.prev := 8.prev := 16.prev := ... := 1. And then we start processing our primes.
When we reach prime p we start by searching for the previous inserted value below n/p. Walking backwards from there we keep inserting values for x*p, x*p^2, ... until we hit our limit. (The reason for backwards is that we do not want to try to insert, say, 18 once for 3 and once for 9. Going backwards prevents that.)
Now what is our running time? Finding the primes is O(n). Finding the initial inserts is also easily O(n/log(n)) operations of time O(log(n)) for another O(n). Now what about the inserts of all of the values? That is trivially O(n log(n)) but can we do better?
Well first all of the inserts to density 1/log(n) filled in can be done in time O(n/log(n)) * O(log(n)) = O(n). And then all of the inserts to density 1/log(log(n)) can likewise be done in time O(n/log(log(n))) * O(log(log(n))) = O(n). And so on with increasing numbers of logs. The number of such factors that we get is O(lg*(n)) for the O(n lg*(n)) estimate that I gave.
I haven't shown that this estimate is as good as you can do, but I think that it is.
So, not O(n), but pretty darned close.

Maximum of all possible subarrays of an array

How do I find/store maximum/minimum of all possible non-empty sub-arrays of an array of length n?
I generated the segment tree of the array and the for each possible sub array if did query into segment tree but that's not efficient. How do I do it in O(n)?
P.S n <= 10 ^7
For eg. arr[]= { 1, 2, 3 }; // the array need not to be sorted
sub-array min max
{1} 1 1
{2} 2 2
{3} 3 3
{1,2} 1 2
{2,3} 2 3
{1,2,3} 1 3
I don't think it is possible to store all those values in O(n). But it is pretty easy to create, in O(n), a structure that makes possible to answer, in O(1) the query "how many subsets are there where A[i] is the maximum element".
Naïve version:
Think about the naïve strategy: to know how many such subsets are there for some A[i], you could employ a simple O(n) algorithm that counts how many elements to the left and to the right of the array that are less than A[i]. Let's say:
A = [... 10 1 1 1 5 1 1 10 ...]
This 5 up has 3 elements to the left and 2 to the right lesser than it. From this we know there are 4*3=12 subarrays for which that very 5 is the maximum. 4*3 because there are 0..3 subarrays to the left and 0..2 to the right.
Optimized version:
This naïve version of the check would take O(n) operations for each element, so O(n^2) after all. Wouldn't it be nice if we could compute all these lengths in O(n) in a single pass?
Luckily there is a simple algorithm for that. Just use a stack. Traverse the array normally (from left to right). Put every element index in the stack. But before putting it, remove all the indexes whose value are lesser than the current value. The remaining index before the current one is the nearest larger element.
To find the same values at the right, just traverse the array backwards.
Here's a sample Python proof-of-concept that shows this algorithm in action. I implemented also the naïve version so we can cross-check the result from the optimized version:
from random import choice
from collections import defaultdict, deque
def make_bounds(A, fallback, arange, op):
stack = deque()
bound = [fallback] * len(A)
for i in arange:
while stack and op(A[stack[-1]], A[i]):
stack.pop()
if stack:
bound[i] = stack[-1]
stack.append(i)
return bound
def optimized_version(A):
T = zip(make_bounds(A, -1, xrange(len(A)), lambda x, y: x<=y),
make_bounds(A, len(A), reversed(xrange(len(A))), lambda x, y: x<y))
answer = defaultdict(lambda: 0)
for i, x in enumerate(A):
left, right = T[i]
answer[x] += (i-left) * (right-i)
return dict(answer)
def naive_version(A):
answer = defaultdict(lambda: 0)
for i, x in enumerate(A):
left = next((j for j in range(i-1, -1, -1) if A[j]>A[i]), -1)
right = next((j for j in range(i+1, len(A)) if A[j]>=A[i]), len(A))
answer[x] += (i-left) * (right-i)
return dict(answer)
A = [choice(xrange(32)) for i in xrange(8)]
MA1 = naive_version(A)
MA2 = optimized_version(A)
print 'Array: ', A
print 'Naive: ', MA1
print 'Optimized:', MA2
print 'OK: ', MA1 == MA2
I don't think it is possible to it directly in O(n) time: you need to iterate over all the elements of the subarrays, and you have n of them. Unless the subarrays are sorted.
You could, on the other hand, when initialising the subarrays, instead of making them normal arrays, you could build heaps, specifically min heaps when you want to find the minimum and max heaps when you want to find the maximum.
Building a heap is a linear time operation, and retrieving the maximum and minimum respectively for a max heap and min heap is a constant time operation, since those elements are found at the first place of the heap.
Heaps can be easily implemented just using a normal array.
Check this article on Wikipedia about binary heaps: https://en.wikipedia.org/wiki/Binary_heap.
I do not understand what exactly you mean by maximum of sub-arrays, so I will assume you are asking for one of the following
The subarray of maximum/minimum length or some other criteria (in which case the problem will reduce to finding max element in a 1 dimensional array)
The maximum elements of all your sub-arrays either in the context of one sub-array or in the context of the entire super-array
Problem 1 can be solved by simply iterating your super-array and storing a reference to the largest element. Or building a heap as nbro had said. Problem 2 also has a similar solution. However a linear scan is through n arrays of length m is not going to be linear. So you will have to keep your class invariants such that the maximum/minimum is known after every operation. Maybe with the help of some data structure like a heap.
Assuming you mean contiguous sub-arrays, create the array of partial sums where Yi = SUM(i=0..i)Xi, so from 1,4,2,3 create 0,1,1+4=5,1+4+2=7,1+4+2+3=10. You can create this from left to right in linear time, and the value of any contiguous subarray is one partial sum subtracted from another, so 4+2+3 = 1+4+2+3 - 1= 9.
Then scan through the partial sums from left to right, keeping track of the smallest value seen so far (including the initial zero). At each point subtract this from the current value and keep track of the highest value produced in this way. This should give you the value of the contiguous sub-array with largest sum, and you can keep index information, too, to find where this sub-array starts and ends.
To find the minimum, either change the above slightly or just reverse the sign of all the numbers and do exactly the same thing again: min(a, b) = -max(-a, -b)
I think the question you are asking is to find the Maximum of a subarry.
bleow is the code that cand do that in O(n) time.
int maxSumSubArr(vector<int> a)
{
int maxsum = *max_element(a.begin(), a.end());
if(maxsum < 0) return maxsum;
int sum = 0;
for(int i = 0; i< a.size; i++)
{
sum += a[i];
if(sum > maxsum)maxsum = sum;
if(sum < 0) sum = 0;
}
return maxsum;
}
Note: This code is not tested please add comments if found some issues.

Minimum sum that cant be obtained from a set

Given a set S of positive integers whose elements need not to be distinct i need to find minimal non-negative sum that cant be obtained from any subset of the given set.
Example : if S = {1, 1, 3, 7}, we can get 0 as (S' = {}), 1 as (S' = {1}), 2 as (S' = {1, 1}), 3 as (S' = {3}), 4 as (S' = {1, 3}), 5 as (S' = {1, 1, 3}), but we can't get 6.
Now we are given one array A, consisting of N positive integers. Their are M queries,each consist of two integers Li and Ri describe i'th query: we need to find this Sum that cant be obtained from array elements ={A[Li], A[Li+1], ..., A[Ri-1], A[Ri]} .
I know to find it by a brute force approach to be done in O(2^n). But given 1 ≤ N, M ≤ 100,000.This cant be done .
So is their any effective approach to do it.
Concept
Suppose we had an array of bool representing which numbers so far haven't been found (by way of summing).
For each number n we encounter in the ordered (increasing values) subset of S, we do the following:
For each existing True value at position i in numbers, we set numbers[i + n] to True
We set numbers[n] to True
With this sort of a sieve, we would mark all the found numbers as True, and iterating through the array when the algorithm finishes would find us the minimum unobtainable sum.
Refinement
Obviously, we can't have a solution like this because the array would have to be infinite in order to work for all sets of numbers.
The concept could be improved by making a few observations. With an input of 1, 1, 3, the array becomes (in sequence):
(numbers represent true values)
An important observation can be made:
(3) For each next number, if the previous numbers had already been found it will be added to all those numbers. This implies that if there were no gaps before a number, there will be no gaps after that number has been processed.
For the next input of 7 we can assert that:
(4) Since the input set is ordered, there will be no number less than 7
(5) If there is no number less than 7, then 6 cannot be obtained
We can come to a conclusion that:
(6) the first gap represents the minimum unobtainable number.
Algorithm
Because of (3) and (6), we don't actually need the numbers array, we only need a single value, max to represent the maximum number found so far.
This way, if the next number n is greater than max + 1, then a gap would have been made, and max + 1 is the minimum unobtainable number.
Otherwise, max becomes max + n. If we've run through the entire S, the result is max + 1.
Actual code (C#, easily converted to C):
static int Calculate(int[] S)
{
int max = 0;
for (int i = 0; i < S.Length; i++)
{
if (S[i] <= max + 1)
max = max + S[i];
else
return max + 1;
}
return max + 1;
}
Should run pretty fast, since it's obviously linear time (O(n)). Since the input to the function should be sorted, with quicksort this would become O(nlogn). I've managed to get results M = N = 100000 on 8 cores in just under 5 minutes.
With numbers upper limit of 10^9, a radix sort could be used to approximate O(n) time for the sorting, however this would still be way over 2 seconds because of the sheer amount of sorts required.
But, we can use statistical probability of 1 being randomed to eliminate subsets before sorting. On the start, check if 1 exists in S, if not then every query's result is 1 because it cannot be obtained.
Statistically, if we random from 10^9 numbers 10^5 times, we have 99.9% chance of not getting a single 1.
Before each sort, check if that subset contains 1, if not then its result is one.
With this modification, the code runs in 2 miliseconds on my machine. Here's that code on http://pastebin.com/rF6VddTx
This is a variation of the subset-sum problem, which is NP-Complete, but there is a pseudo-polynomial Dynamic Programming solution you can adopt here, based on the recursive formula:
f(S,i) = f(S-arr[i],i-1) OR f(S,i-1)
f(-n,i) = false
f(_,-n) = false
f(0,i) = true
The recursive formula is basically an exhaustive search, each sum can be achieved if you can get it with element i OR without element i.
The dynamic programming is achieved by building a SUM+1 x n+1 table (where SUM is the sum of all elements, and n is the number of elements), and building it bottom-up.
Something like:
table <- SUM+1 x n+1 table
//init:
for each i from 0 to SUM+1:
table[0][i] = true
for each j from 1 to n:
table[j][0] = false
//fill the table:
for each i from 1 to SUM+1:
for each j from 1 to n+1:
if i < arr[j]:
table[i][j] = table[i][j-1]
else:
table[i][j] = table[i-arr[j]][j-1] OR table[i][j-1]
Once you have the table, you need the smallest i such that for all j: table[i][j] = false
Complexity of solution is O(n*SUM), where SUM is the sum of all elements, but note that the algorithm can actually be trimmed after the required number was found, without the need to go on for the next rows, which are un-needed for the solution.

Algorithm to determine indices i..j of array A containing all the elements of another array B

I came across this question on an interview questions thread. Here is the question:
Given two integer arrays A [1..n] and
B[1..m], find the smallest window
in A that contains all elements of
B. In other words, find a pair < i , j >
such that A[i..j] contains B[1..m].
If A doesn't contain all the elements of
B, then i,j can be returned as -1.
The integers in A need not be in the same order as they are in B. If there are more than one smallest window (different, but have the same size), then its enough to return one of them.
Example: A[1,2,5,11,2,6,8,24,101,17,8] and B[5,2,11,8,17]. The algorithm should return i = 2 (index of 5 in A) and j = 9 (index of 17 in A).
Now I can think of two variations.
Let's suppose that B has duplicates.
This variation doesn't consider the number of times each element occurs in B. It just checks for all the unique elements that occur in B and finds the smallest corresponding window in A that satisfies the above problem. For example, if A[1,2,4,5,7] and B[2,2,5], this variation doesn't bother about there being two 2's in B and just checks A for the unique integers in B namely 2 and 5 and hence returns i=1, j=3.
This variation accounts for duplicates in B. If there are two 2's in B, then it expects to see at least two 2's in A as well. If not, it returns -1,-1.
When you answer, please do let me know which variation you are answering. Pseudocode should do. Please mention space and time complexity if it is tricky to calculate it. Mention if your solution assumes array indices to start at 1 or 0 too.
Thanks in advance.
Complexity
Time: O((m+n)log m)
Space: O(m)
The following is provably optimal up to a logarithmic factor. (I believe the log factor cannot be got rid of, and so it's optimal.)
Variant 1 is just a special case of variant 2 with all the multiplicities being 1, after removing duplicates from B. So it's enough to handle the latter variant; if you want variant 1, just remove duplicates in O(m log m) time. In the following, let m denote the number of distinct elements in B. We assume m < n, because otherwise we can just return -1, in constant time.
For each index i in A, we will find the smallest index s[i] such that A[i..s[i]] contains B[1..m], with the right multiplicities. The crucial observation is that s[i] is non-decreasing, and this is what allows us to do it in amortised linear time.
Start with i=j=1. We will keep a tuple (c[1], c[2], ... c[m]) of the number of times each element of B occurs, in the current window A[i..j]. We will also keep a set S of indices (a subset of 1..m) for which the count is "right" (i.e., k for which c[k]=1 in variant 1, or c[k] = <the right number> in variant 2).
So, for i=1, starting with j=1, increment each c[A[j]] (if A[j] was an element of B), check if c[A[j]] is now "right", and add or remove j from S accordingly. Stop when S has size m. You've now found s[1], in at most O(n log m) time. (There are O(n) j's, and each set operation took O(log m) time.)
Now for computing successive s[i]s, do the following. Increment i, decrement c[A[i]], update S accordingly, and, if necessary, increment j until S has size m again. That gives you s[i] for each i. At the end, report the (i,s[i]) for which s[i]-i was smallest.
Note that although it seems that you might be performing up to O(n) steps (incrementing j) for each i, the second pointer j only moves to the right: so the total number of times you can increment j is at most n. (This is amortised analysis.) Each time you increment j, you might perform a set operation that takes O(log m) time, so the total time is O(n log m). The space required was for keeping the tuple of counts, the set of elements of B, the set S, and some constant number of other variables, so O(m) in all.
There is an obvious O(m+n) lower bound, because you need to examine all the elements. So the only question is whether we can prove the log factor is necessary; I believe it is.
Here is the solution I thought of (but it's not very neat).
I am going to illustrate it using the example in the question.
Let A[1,2,5,11,2,6,8,24,101,17,8] and B[5,2,11,8,17]
Sort B. (So B = [2,5,8,11,17]). This step takes O(log m).
Allocate an array C of size A. Iterate through elements of A, binary search for it in the sorted B, if it is found enter it's "index in sorted B + 1" in C. If its not found, enter -1. After this step,
A = [1 , 2, 5, 11, 2, 6, 8, 24, 101, 17, 8] (no changes, quoting for ease).
C = [-1, 1, 2, 4 , 1, -1, 3, -1, -1, 5, 3]
Time: (n log m), Space O(n).
Find the smallest window in C that has all the numbers from 1 to m. For finding the window, I can think of two general directions:
a. A bit oriented approach where in I set the bit corresponding to each position and finally check by some kind of ANDing.
b. Create another array D of size m, go through C and when I encounter p in C, increment D[p]. Use this for finding the window.
Please leave comments regarding the general approach as such, as well as for 3a and 3b.
My solution:
a. Create a hash table with m keys, one for each value in B. Each key in H maps to a dynamic array of sorted indices containing indices in A that are equal to B[i]. This takes O(n) time. We go through each index j in A. If key A[i] exists in H (O(1) time) then add an value containing the index j of A to the list of indices that H[A[i]] maps to.
At this point we have 'binned' n elements into m bins. However, total storage is just O(n).
b. The 2nd part of the algorithm involves maintaining a ‘left’ index and a ‘right’ index for each list in H. Lets create two arrays of size m called L and R that contain these values. Initially in our example,
We also keep track of the “best” minimum window.
We then iterate over the following actions on L and R which are inherently greedy:
i. In each iteration, we compute the minimum and maximum values in L and R.
For L, Lmax - Lmin is the window and for R, Rmax - Rmin is the window. We update the best window if one of these windows is better than the current best window. We use a min heap to keep track of the minimum element in L and a max heap to keep track of the largest element in R. These take O(m*log(m)) time to build.
ii. From a ‘greedy’ perspective, we want to take the action that will minimize the window size in each L and R. For L it intuitively makes sense to increment the minimum index, and for R, it makes sense to decrement the maximum index.
We want to increment the array position for the minimum value until it is larger than the 2nd smallest element in L, and similarly, we want to decrement the array position for the largest value in R until it is smaller than the 2nd largest element in R.
Next, we make a key observation:
If L[i] is the minimum value in L and R[i] is less than the 2nd smallest element in L, ie, if R[i] were to still be the minimum value in L if L[i] were replaced with R[i], then we are done. We now have the “best” index in list i that can contribute to the minimum window. Also, all the other elements in R cannot contribute to the best window since their L values are all larger than L[i]. Similarly if R[j] is the maximum element in R and L[j] is greater than the 2nd largest value in R, we are also done by setting R[j] = L[j]. Any other index in array i to the left of L[j] has already been accounted for as have all indices to the right of R[j], and all indices between L[j] and R[j] will perform poorer than L[j].
Otherwise, we simply increment the array position L[i] until it is larger than the 2nd smallest element in L and decrement array position R[j] (where R[j] is the max in R) until it is smaller than the 2nd largest element in R. We compute the windows and update the best window if one of the L or R windows is smaller than the best window. We can do a Fibonacci search to optimally do the increment / decrement. We keep incrementing L[i] using Fibonacci increments until we are larger than the 2nd largest element in L. We can then perform binary search to get the smallest element L[i] that is larger than the 2nd largest element in L, similar for the set R. After the increment / decrement, we pop the largest element from the max heap for R and the minimum element for the min heap for L and insert the new values of L[i] and R[j] into the heaps. This is an O(log(m)) operation.
Step ii. would terminate when Lmin can’t move any more to the right or Rmax can’t move any more to the left (as the R/L values are the same). Note that we can have scenarios in which L[i] = R[i] but if it is not the minimum element in L or the maximum element in R, the algorithm would still continue.
Runtime analysis:
a. Creation of the hash table takes O(n) time and O(n) space.
b. Creation of heaps: O(m*log(m)) time and O(m) space.
c. The greedy iterative algorithm is a little harder to analyze. Its runtime is really bounded by the distribution of elements. Worst case, we cover all the elements in each array in the hash table. For each element, we perform an O(log(m)) heap update.
Worst case runtime is hence O(n*log(m)) for the iterative greedy algorithm. In the best case, we discover very fast that L[i] = R[i] for the minimum element in L or the maximum element in R…run time is O(1)*log(m) for the greedy algorithm!
Average case seems really hard to analyze. What is the average “convergence” of this algorithm to the minimum window. If we were to assume that the Fibonacci increments / binary search were to help, we could say we only look at m*log(n/m) elements (every list has n/m elements) in the average case. In that case, the running time of the greedy algorithm would be m*log(n/m)*log(m).
Total running time
Best case: O(n + m*log(m) + log(m)) time = O(n) assuming m << n
Average case: O(n + m*log(m) + m*log(n/m)*log(m)) time = O(n) assuming m << n.
Worst case: O(n + n*log(m) + m*log(m)) = O(n*log(m)) assuming m << n.
Space: O(n + m) (hashtable and heaps) always.
Edit: Here is a worked out example:
A[5, 1, 1, 5, 6, 1, 1, 5]
B[5, 6]
H:
{
5 => {1, 4, 8}
6 => {5}
}
Greedy Algorithm:
L => {1, 1}
R => {3, 1}
Iteration 1:
a. Lmin = 1 (since H{5}[1] < H{6}[1]), Lmax = 5. Window: 5 - 1 + 1= 5
Increment Lmin pointer, it now becomes 2.
L => {2, 1}
Rmin = H{6}[1] = 5, Rmax = H{5}[3] = 8. Window = 8 - 5 + 1 = 4. Best window so far = 4 (less than 5 computed above).
We also note the indices in A (5, 8) for the best window.
Decrement Rmax, it now becomes 2 and the value is 4.
R => {2, 1}
b. Now, Lmin = 4 (H{5}[2]) and the index i in L is 1. Lmax = 5 (H{6}[1]) and the index in L is 2.
We can't increment Lmin since L[1] = R[1] = 2. Thus we just compute the window now.
The window = Lmax - Lmin + 1 = 2 which is the best window so far.
Thus, the best window in A = (4, 5).
struct Pair {
int i;
int j;
};
Pair
find_smallest_subarray_window(int *A, size_t n, int *B, size_t m)
{
Pair p;
p.i = -1;
p.j = -1;
// key is array value, value is array index
std::map<int, int> map;
size_t count = 0;
int i;
int j;
for(i = 0; i < n, ++i) {
for(j = 0; j < m; ++j) {
if(A[i] == B[j]) {
if(map.find(A[i]) == map.end()) {
map.insert(std::pair<int, int>(A[i], i));
} else {
int start = findSmallestVal(map);
int end = findLargestVal(map);
int oldLength = end-start;
int oldIndex = map[A[i]];
map[A[i]] = i;
int _start = findSmallestVal(map);
int _end = findLargestVal(map);
int newLength = _end - _start;
if(newLength > oldLength) {
// revert back
map[A[i]] = oldIndex;
}
}
}
}
if(count == m) {
break;
}
}
p.i = findSmallestVal(map);
p.j = findLargestVal(map);
return p;
}

Resources