Wildfly 11 - High Availability - Single deploy on slave - high-availability

I have two servers in a HA mode. I'd like to know if is it possible to deploy an application on the slave server? If yes, how to configure it in jgroups? I need to run a specific program that access the master database, but I would not like to run on master serve to avoid overhead on it.

JGroups itself does not know much about WildFly and the deployments, it only creates a communication channel between nodes. I don't know where you get the notion of master/slave, but JGroups always has single* node marked as coordinator. You can check the membership through Channel.getView().
However, you still need to deploy the app on both nodes and just make it inactive if this is not its target node.
*) If there's no split-brain partition, or similar rare/temporal issues

Related

How to access Elasticsearch Cluster in VPN with Spring Boot

I have an Elasticsearch cluster in a VPN.
How can my Spring Boot application access the cluster securely if it is located on a separate server outside of the VPN and how can I configure it in the Spring boot configuration (application.yml/application.properties)?
I also want the application to connect to the cluster i an way so that if i have e.g. 2 Master eligible nodes and one fails, the connection remains intact.
if you have only 2 master eligble nodes, you are at risk of the "split brain problem". there is a easy formula for the calculation of the required number of master nodes:
M = 2F +1 ( m=master node count, f=number of master nodes possible to fail at same time)
in your application define all master nodes as target for the elasticsearch client. The client will handle the failover. see elasticsearc client documentation or https://qbox.io/blog/rest-calls-made-easy-part-2-sniffing-elasticsearch for a example
the vpn should not be handled by your application. the infrastructure (server, firewall) is the right place to address it. try to develop your application environment agnostic. this will make your app easier to develop, maintain and make it more robust to infrastructure changes

Can we run two 'slave' nodes on the same machines?

We are running a 3 node mesos cluster and mesos master is running on each node. Also, 2 slaves are running on each node. Is this a good practice? 2 slaves on each cluster won't be sending too much offer and end up being overloaded? What is the recommended config for 3 nodes cluster?
Thread from Mesos User Mailing List
It depends on your isolation setting (mainly cgroup, or any node level
resources). In general, we don't recommend folks use multiple agents on a
node.
It's possible to make it work by setting cgroup_root separately for
MesosContainerizer. For DockerContainerizer, currently, we hard code
DOCKER_NAME_PREFIX, making it not possible to use two agents on a node
properly.
Running Docker containers won't work properly because restarting one agent
will cause Docker containers managed by the other agent to be deleted.

Cache a redis cluster locally

I have a scenario where we want to use redis, but I am not sure how to go about setting it up. Here is what we want to achieve eventually:
A redundant central redis cluster where all the writes will occur with servers in two aws regions.
Local redis caches on servers which will hold a replica of the complete central cluster.
The reason for this is that we have many servers which need read access only, and we want them to be independent even in case of an outage (where the server cannot reach the main cluster).
I know there might be a "stale data" issue withing the caches, but we can tolerate that as long as we get eventual consistency.
What is the correct way to achieve something like that using redis?
Thanks!
You need the Redis Replication (Master-Slave) Architecture.
Redis Replication :
Redis replication is a very simple to use and configure master-slave replication that allows slave Redis servers to be exact copies of master servers. The following are some very important facts about Redis replication:
Redis uses asynchronous replication. Starting with Redis 2.8, however, slaves periodically acknowledge the amount of data processed from the replication stream.
A master can have multiple slaves.
Slaves are able to accept connections from other slaves. Aside from connecting a number of slaves to the same master, slaves can also be connected to other slaves in a cascading-like structure.
Redis replication is non-blocking on the master side. This means that the master will continue to handle queries when one or more slaves perform the initial synchronization.
Replication is also non-blocking on the slave side. While the slave is performing the initial synchronization, it can handle queries using the old version of the dataset, assuming you configured Redis to do so in redis.conf. Otherwise, you can configure Redis slaves to return an error to clients if the replication stream is down. However, after the initial sync, the old dataset must be deleted and the new one must be loaded. The slave will block incoming connections during this brief window (that can be as long as many seconds for very large datasets).
Replication can be used both for scalability, in order to have multiple slaves for read-only queries (for example, slow O(N) operations can be offloaded to slaves), or simply for data redundancy.
It is possible to use replication to avoid the cost of having the master write the full dataset to disk: a typical technique involves configuring your master redis.conf to avoid persisting to disk at all, then connect a slave configured to save from time to time, or with AOF enabled. However this setup must be handled with care, since a restarting master will start with an empty dataset: if the slave tries to synchronized with it, the slave will be emptied as well.
Go through the Steps : How to Configure Redis Replication.
So I decided to go with redis-sentinel.
Using a redis-sentinel I can set the slave-priority on the cache servers to 0, which will prevent them from becoming masters.
I will have one master set up, and a few "backup masters" which will actually be slaves with slave-priority set to a value which is not 0, which will allow them to take over once the master goes down.
The sentinel will monitor the master, and once the master goes down it will promote one of the "backup masters" and promote it to be the new master.
More info can be found here

Understand Spark: Cluster Manager, Master and Driver nodes

Having read this question, I would like to ask additional questions:
The Cluster Manager is a long-running service, on which node it is running?
Is it possible that the Master and the Driver nodes will be the same machine? I presume that there should be a rule somewhere stating that these two nodes should be different?
In case where the Driver node fails, who is responsible of re-launching the application? and what will happen exactly? i.e. how the Master node, Cluster Manager and Workers nodes will get involved (if they do), and in which order?
Similarly to the previous question: In case where the Master node fails, what will happen exactly and who is responsible of recovering from the failure?
1. The Cluster Manager is a long-running service, on which node it is running?
Cluster Manager is Master process in Spark standalone mode. It can be started anywhere by doing ./sbin/start-master.sh, in YARN it would be Resource Manager.
2. Is it possible that the Master and the Driver nodes will be the same machine? I presume that there should be a rule somewhere stating that these two nodes should be different?
Master is per cluster, and Driver is per application. For standalone/yarn clusters, Spark currently supports two deploy modes.
In client mode, the driver is launched in the same process as the client that submits the application.
In cluster mode, however, for standalone, the driver is launched from one of the Worker & for yarn, it is launched inside application master node and the client process exits as soon as it fulfils its responsibility of submitting the application without waiting for the app to finish.
If an application submitted with --deploy-mode client in Master node, both Master and Driver will be on the same node. check deployment of Spark application over YARN
3. In the case where the Driver node fails, who is responsible for re-launching the application? And what will happen exactly? i.e. how the Master node, Cluster Manager and Workers nodes will get involved (if they do), and in which order?
If the driver fails, all executors tasks will be killed for that submitted/triggered spark application.
4. In the case where the Master node fails, what will happen exactly and who is responsible for recovering from the failure?
Master node failures are handled in two ways.
Standby Masters with ZooKeeper:
Utilizing ZooKeeper to provide leader election and some state storage,
you can launch multiple Masters in your cluster connected to the same
ZooKeeper instance. One will be elected “leader” and the others will
remain in standby mode. If the current leader dies, another Master
will be elected, recover the old Master’s state, and then resume
scheduling. The entire recovery process (from the time the first
leader goes down) should take between 1 and 2 minutes. Note that this
delay only affects scheduling new applications – applications that
were already running during Master failover are unaffected. check here
for configurations
Single-Node Recovery with Local File System:
ZooKeeper is the best way to go for production-level high
availability, but if you want to be able to restart the Master if
it goes down, FILESYSTEM mode can take care of it. When applications
and Workers register, they have enough state written to the provided
directory so that they can be recovered upon a restart of the Master
process. check here for conf and more details
The Cluster Manager is a long-running service, on which node it is running?
A cluster manager is just a manager of resources, i.e. CPUs and RAM, that SchedulerBackends use to launch tasks.
A cluster manager does nothing more to Apache Spark, but offering resources, and once Spark executors launch, they directly communicate with the driver to run tasks.
You can start a standalone master server by executing:
./sbin/start-master.sh
Can be started anywhere.
To run an application on the Spark cluster
./bin/spark-shell --master spark://IP:PORT
Is it possible that the Master and the Driver nodes will be the same machine?
I presume that there should be a rule somewhere stating that these two nodes should be different?
In standalone mode, when you start your machine certain JVM will start.Your SparK Master will start up and on each machine Worker JVM will start and they will register with the Spark Master.
Both are the resource manager.When you start your application or submit your application in cluster mode a Driver will start up wherever you do ssh to start that application.
Driver JVM will contact to the SparK Master for executors(Ex) and in standalone mode Worker will start the Ex.
So Spark Master is per cluster and Driver JVM is per application.
In case where the Driver node fails, who is responsible of re-launching the application? and what will happen exactly?
i.e. how the Master node, Cluster Manager and Workers nodes will get involved (if they do), and in which order?
If a Ex JVM will crashes the Worker JVM will start the Ex and when Worker JVM ill crashes Spark Master will start them.
And with a Spark standalone cluster with cluster deploy mode, you can also specify --supervise to make sure that the driver is automatically restarted if it fails with non-zero exit code.Spark Master will start Driver JVM
Similarly to the previous question: In case where the Master node fails,
what will happen exactly and who is responsible of recovering from the failure?
failing on master will result in executors not able to communicate with it. So, they will stop working. Failing of master will make driver unable to communicate with it for job status. So, your application will fail.
Master loss will be acknowledged by the running applications but otherwise these should continue to work more or less like nothing happened with two important exceptions:
1.application won't be able to finish in elegant way.
2.if Spark Master is down Worker will try to reregisterWithMaster. If this fails multiple times workers will simply give up.
reregisterWithMaster()-- Re-register with the active master this worker has been communicating with. If there is none, then it means this worker is still bootstrapping and hasn't established a connection with a master yet, in which case we should re-register with all masters.
It is important to re-register only with the active master during failures.worker unconditionally attempts to re-register with all masters,
will may arise race condition.Error detailed in SPARK-4592:
At this moment long running applications won't be able to continue processing but it still shouldn't result in immediate failure.
Instead application will wait for a master to go back on-line (file system recovery) or a contact from a new leader (Zookeeper mode), and if that happens it will continue processing.

Provision to start group of applications on same Mesos slave

I have cluster of 3 Mesos slaves, where I have two applications: “redis” and “memcached”. Where redis depends on memcached and the requirement is both of the applications/services should start on same node instead of different slave nodes.
So I have created the application group and added the dependency properly in the JSON file. After launching the JSON file via “v2/groups” REST API, I observe that sometime both application group will start on same node but sometimes it will start on different slaves which breaks our requirement.
So intent/requirement is; if any application fails to start on a slave both the application should failover to other slave node. Also can I configure the JSON file to tell Marathon to start the application group on slave-1 (specific slave first) if it is available else start it on other slave in a cluster. Due to some reason if this application group will start on other slave can Marathon relaunch the application group to slave-1 if it is available to serve the request.
Thanks in advance for help.
Edit/Update (2):
Mesos, Marathon, and DC/OS support for PODs is available now:
DC/OS: https://dcos.io/docs/1.9/usage/pods/using-pods/
Mesos: https://github.com/apache/mesos/blob/master/docs/nested-container-and-task-group.md
Marathon: https://github.com/mesosphere/marathon/blob/master/docs/docs/pods.md
I assume you are talking about marathon apps.
Marathon application groups don't have any semantics concerning co-location on the same node and the same is the case for dependencies.
You seem to be looking for a Kubernetes like Pod abstraction in marathon, which is on the roadmap but not yet available (see update above :-)).
Hope this helps!
I think this should be possible (as a workaround) if you specify the correct app contraints within the group's JSON.
Have a look at the example request at
https://mesosphere.github.io/marathon/docs/generated/api.html#v2_groups_post
and the constraints syntax at
https://mesosphere.github.io/marathon/docs/constraints.html
e.g.
"constraints": [["hostname", "CLUSTER", "slave-1"]]
should do. Downside is that there will be no automatic failover to another slave that way. Still, I'd be curious why both apps need to specifically run on the same slave node...

Resources