writing partial data with libwebsockets - libwebsockets

I'm using the libwebsockets v2.4.
The doc seems unclear to me about what I have to do with the returned value of the lws_write() function.
If it returns -1, it's an error and I'm invited to close the connection. That's fine for me.
But when it returns a value that is strictly inferior to the buffer length I pass, should I consider that I have to write the last bytes that could not be written later (in another WRITABLE callback occurrence). Is it even possible to have this situation?
Also, should I use the lws_send_pipe_choked() before using the lws_write(), considering that I always use lws_write() in the context of a WRITABLE callback?

My understanding is that lws_write always return the asked buffer length except is an error occurs.
If you look at lws_issue_raw() (from which the result is returned by lws_write()) in output.c (https://github.com/warmcat/libwebsockets/blob/v2.4.0/lib/output.c#L157), you can see that if the length written by lws_ssl_capable_write() is less than the provided length, then the lws allocate a buffer to fill up the remaining bytes on wsi->trunc_alloc, in order for it to be sent in the future.
Concerning your second question, I think it is safe to call lws_write() in the context of a WRITABLE callback without checking if the pipe is choked. However, if you happen to loop on lws_write() in the callback, lws_send_pipe_choked() must be called in order to protect the subsequent calls to lws_write(). If you don't, you might stumble upon this assertion https://github.com/warmcat/libwebsockets/blob/v2.4.0/lib/output.c#L83 and the usercode will crash.

Related

Is it possible to determine when a message has been entirely read when reading from a Named Pipe in Overlapped I/O?

It is very easy to determine if a message has been entirely read when reading form a pipe with read mode set to PIPE_READMODE_MESSAGE in synchronous I/O. (If the ReadFile function returns FALSE and GetLastError() returns ERROR_MORE_DATA, it means that the message is incomplete and that subsequent reads are necessary to retrieve the full message.)
Now, if the Named Pipe operates in Overlapped I/O instead and a read operation is pending (ReadFile function returns FALSE and GetLastError() returns ERROR_IO_PENDING), how do I know if I retrieved the full message when the operation completes? All I can determine is the number of bytes that were actually transferred by calling the GetOverlappedResult function, but it does not tell me whether or not the full message has been read…
Am I missing something here?
I think the easiest way ist to know, how long the messages is that you are expecting. Your protocol may give you the information.
For example the protocol always delivers a WORD as the first 2 bytes that tells you the length of the complete message.
So I use overlapped I/O with ReadFile to get the first 2 Bytes of the WORD. When I receive them I use ReadFile without overlapped I/O using the known message length and so I get all data.

MPI rank is changed after MPI_SENDRECV call [duplicate]

This question already has an answer here:
MPI_Recv overwrites parts of memory it should not access
(1 answer)
Closed 3 years ago.
I have some Fortran code that I'm parallelizing with MPI which is doing truly bizarre things. First, there's a variable nstartg that I broadcast from the boss process to all the workers:
call mpi_bcast(nstartg,1,mpi_integer,0,mpi_comm_world,ierr)
The variable nstartg is never altered again in the program. Later on, I have the boss process send eproc elements of an array edge to the workers:
if (me==0) then
do n=1,ntasks-1
(determine the starting point estart and the number eproc
of values to send)
call mpi_send(edge(estart),eproc,mpi_integer,n,n,mpi_comm_world,ierr)
enddo
endif
with a matching receive statement if me is non-zero. (I've left out some other code for readability; there's a good reason I'm not using scatterv.)
Here's where things get weird: the variable nstartg gets altered to n instead of keeping its actual value. For example, on process 1, after the mpi_recv, nstartg = 1, and on process 2 it's equal to 2, and so forth. Moreover, if I change the code above to
call mpi_send(edge(estart),eproc,mpi_integer,n,n+1234567,mpi_comm_world,ierr)
and change the tag accordingly in the matching call to mpi_recv, then on process 1, nstartg = 1234568; on process 2, nstartg = 1234569, etc.
What on earth is going on? All I've changed is the tag that mpi_send/recv are using to identify the message; provided the tags are unique so that the messages don't get mixed up, this shouldn't change anything, and yet it's altering a totally unrelated variable.
On the boss process, nstartg is unaltered, so I can fix this by broadcasting it again, but that's hardly a real solution. Finally, I should mention that compiling and running this code using electric fence hasn't picked up any buffer overflows, nor did -fbounds-check throw anything at me.
The most probable cause is that you pass an INTEGER scalar as the actual status argument to MPI_RECV when it should be really declared as an array with an implementation-specific size, available as the MPI_STATUS_SIZE constant:
INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status
or
INTEGER status(MPI_STATUS_SIZE)
The message tag is written to one of the status fields by the receive operation (its implementation-specific index is available as the MPI_TAG constant and the field value can be accessed as status(MPI_TAG)) and if your status is simply a scalar INTEGER, then several other local variables would get overwritten. In your case it simply happens so that nstartg falls just above status in the stack.
If you do not care about the receive status, you can pass the special constant MPI_STATUS_IGNORE instead.

Checking for valid user memory in kernel mode with copy_to_user

So, I tried using this:
copy_to_user(p, q, 0)
I want to copy from q to p and if it doesn't work, then I want to know if p points to an invalid address.
copy_to_user returns the number of bytes that weren't copied successfully but in this case, there are 0 bytes and I can't know for sure if p points to an invalid address.
Is there another way to check if p points to a valid user memory?
Yes. You need to check passing size value manually each time before calling copy_to_user(). If it's 0 or not in valid range -- you shouldn't call copy_to_user() at all. This way you can rely on copy_to_user() return value.
the method copy_to_user defined at /usr/src/linux-3.0.6-gentoo/include/asm-generic/uaccess.h
static inline long copy_to_user(void __user *to,
const void *from, unsigned long n)
{
might_fault();
if (access_ok(VERIFY_WRITE, to, n))
return __copy_to_user(to, from, n);
else
return n;
}
the method access_ok checks the accessibility of to(user memory). So you can use the method access_ok to check memory is valid or not(to is not NULL / it's in user space)?
Argument VERIFY_READ or VERIFY_WRITE. VERIFY_READ: identifies whether memory region is readable, VERIFY_WRITE: identifies whether the memory region is readable as well as writable.
source of method access_ok
And what do you consider 'valid user memory'? What do you need this for?
Let's say we only care about the target buffer residing in userspace range (for archs with joint address spaces). From this alone we see that testing the address without the size is pointless - what if the address is the last byte of userspace? Appropriate /range/ check is done by access_ok.
Second part is whether there is a page there or a read/write can be performed without servicing a page fault. Is this of any concern for you? If you read copy_from/whatever you will see it performs the read/write and only catches the fault. There is definitely KPI to check whether the target page can be written to without a fault, but you would need to hold locks (mmap_sem and likely more) over your check and whatever you are going to do next, which is likely not what you wanted to do.
So far it seems you are trying

How to use audioConverterFillComplexBuffer and its callback?

I need a step by step walkthrough on how to use audioConverterFillComplexBuffer and its callback. No, don't tell me to read the Apple docs. I do everything they say and the conversion always fails. No, don't tell me to go look for examples of audioConverterFillComplexBuffer and its callback in use - I've duplicated about a dozen such examples both line for line and modified and the conversion always fails. No, there isn't any problem with the input data. No, it isn't an endian issue. No, the problem isn't my version of OS X.
The problem is that I don't understand how audioConverterFillComplexBuffer works, so I don't know what I'm doing wrong. And nothing out there is helping me understand, because it seems like nobody on Earth really understands how audioConverterFillComplexBuffer works, either. From the people who actually use it(I spy cargo cult programming in their code) to even the authors of Learning Core Audio and/or Apple itself(http://stackoverflow.com/questions/13604612/core-audio-how-can-one-packet-one-byte-when-clearly-one-packet-4-bytes).
This isn't just a problem for me, it's a problem for anybody who wants to program high-performance audio on the Mac platform. Threadbare documentation that's apparently wrong and examples that don't work are no fun.
Once again, to be clear: I NEED A STEP BY STEP WALKTHROUGH ON HOW TO USE audioConverterFillComplexBuffer plus its callback and so does the entire Mac developer community.
This is a very old question but I think is still relevant. I've spent a few days fighting this and have finally achieved a successful conversion. I'm certainly no expert but I'll outline my understanding of how it works. Note I'm using Swift, which I'm also just learning.
Here are the main function arguments:
inAudioConverter: AudioConverterRef: This one is simple enough, just pass in a previously created AudioConverterRef.
inInputDataProc: AudioConverterComplexInputDataProc: The very complex callback. We'll come back to this.
inInputDataProcUserData, UnsafeMutableRawPointer?: This is a reference to whatever data you may need to be provided to the callback function. Important because even in swift the callback can't inherit context. E.g. you may need to access an AudioFileID or keep track of the number of packets read so far.
ioOutputDataPacketSize: UnsafeMutablePointer<UInt32>: This one is a little misleading. The name implies it's the packet size but reading the documentation we learn it's the total number of packets expected for the output format. You can calculate this as outPacketCount = frameCount / outStreamDescription.mFramesPerPacket.
outOutputData: UnsafeMutablePointer<AudioBufferList>: This is an audio buffer list which you need to have already initialized with enough space to hold the expected output data. The size can be calculated as byteSize = outPacketCount * outMaxPacketSize.
outPacketDescription: UnsafeMutablePointer<AudioStreamPacketDescription>?: This is optional. If you need packet descriptions, pass in a block of memory the size of outPacketCount * sizeof(AudioStreamPacketDescription).
As the converter runs it will repeatedly call the callback function to request more data to convert. The main job of the callback is simply to read the requested number packets from the source data. The converter will then convert the packets to the output format and fill the output buffer. Here are the arguments for the callback:
inAudioConverter: AudioConverterRef: The audio converter again. You probably won't need to use this.
ioNumberDataPackets: UnsafeMutablePointer<UInt32>: The number of packets to read. After reading, you must set this to the number of packets actually read (which may be less than the number requested if we reached the end).
ioData: UnsafeMutablePointer<AudioBufferList>: An AudioBufferList which is already configured except for the actual data. You need to initialise ioData.mBuffers.mData with enough capacity to hold the expected number of packets, i.e. ioNumberDataPackets * inMaxPacketSize. Set the value of ioData.mBuffers.mDataByteSize to match.
outDataPacketDescription: UnsafeMutablePointer<UnsafeMutablePointer<AudioStreamPacketDescription>?>?: Depending on the formats used, the converter may need to keep track of packet descriptions. You need to initialise this with enough capacity to hold the expected number of packet descriptions.
inUserData: UnsafeMutableRawPointer?: The user data that you provided to the converter.
So, to start you need to:
Have sufficient information about your input and output data, namely the number of frames and maximum packet sizes.
Initialise an AudioBufferList with sufficient capacity to hold the output data.
Call AudioConverterFillComplexBuffer.
And on each run of the callback you need to:
Initialise ioData with sufficient capacity to store ioNumberDataPackets of source data.
Initialise outDataPacketDescription with sufficient capacity to store ioNumberDataPackets of AudioStreamPacketDescriptions.
Fill the buffer with source packets.
Write the packet descriptions.
Set ioNumberDataPackets to the number of packets actually read.
return noErr if successful.
Here's an example where I read the data from an AudioFileID:
var converter: AudioConverterRef?
// User data holds an AudioFileID, input max packet size, and a count of packets read
var uData = (fRef, maxPacketSize, UnsafeMutablePointer<Int64>.allocate(capacity: 1))
err = AudioConverterNew(&inStreamDesc, &outStreamDesc, &converter)
err = AudioConverterFillComplexBuffer(converter!, { _, ioNumberDataPackets, ioData, outDataPacketDescription, inUserData in
let uData = inUserData!.load(as: (AudioFileID, UInt32, UnsafeMutablePointer<Int64>).self)
ioData.pointee.mBuffers.mDataByteSize = uData.1
ioData.pointee.mBuffers.mData = UnsafeMutableRawPointer.allocate(byteCount: Int(uData.1), alignment: 1)
outDataPacketDescription?.pointee = UnsafeMutablePointer<AudioStreamPacketDescription>.allocate(capacity: Int(ioNumberDataPackets.pointee))
let err = AudioFileReadPacketData(uData.0, false, &ioData.pointee.mBuffers.mDataByteSize, outDataPacketDescription?.pointee, uData.2.pointee, ioNumberDataPackets, ioData.pointee.mBuffers.mData)
uData.2.pointee += Int64(ioNumberDataPackets.pointee)
return err
}, &uData, &numPackets, &bufferList, nil)
Again, I'm no expert, this is just what I've learned by trial and error.

IoGetDeviceObjectPointer() fails with no return status

This is my code:
UNICODE_STRING symbol;
WCHAR ntNameBuffer[128];
swprintf(ntNameBuffer, L"\\Device\\Harddisk1\\Partition1");
RtlInitUnicodeString(&symbol, ntNameBuffer);
KdPrint(("OSNVss:symbol is %ws\n",symbol.Buffer));
status = IoGetDeviceObjectPointer(&symbol,
FILE_READ_DATA,
&pDiskFileObject,
&pDiskDeviceObject);
My driver is next-lower-level of \\Device\\Harddisk1\\Partition1.
When I call IoGetDeviceObjectPointer it will fail and no status returns and it not continue do remaining code.
When I use windbg debug this, it will break with a intelpm.sys;
If I change the objectname to "\\Device\\Harddisk1\\Partition2" (the partition2 is really existing), it will success call
If I change objectname to "\\Device\\Harddisk1\\Partition3", (the partition3 is not existing), it failed and return status = 0xc0000034, mean objectname is not existing.
Does anybody know why when I use object "\\Device\\Harddisk1\\Partition1" it fails and no return status? thanks very much!
First and foremost: what are you trying to achieve and what driver model are you using? What bitness, what OS versions are targeted and on which OS version does it fail? Furthermore: you are at the correct IRQL for the call and is running inside a system thread, right? From which of your driver's entry points (IRP_MJ_*, DriverEntry ...) are you calling this code?
Anyway, was re-reading the docs on this function. Noting in particular the part:
The IoGetDeviceObjectPointer routine returns a pointer to the top object in the named device object's stack and a pointer to the
corresponding file object, if the requested access to the objects can
be granted.
and:
IoGetDeviceObjectPointer establishes a "connection" between the caller
and the next-lower-level driver. A successful caller can use the
returned device object pointer to initialize its own device objects.
It can also be used as as an argument to IoAttachDeviceToDeviceStack,
IoCallDriver, and any routine that creates IRPs for lower drivers. The
returned pointer is a required argument to IoCallDriver.
You don't say, but if you are doing this on a 32bit system, it may be worthwhile tracking down what's going on with IrpTracker. However, my guess is that said "connection" or rather the request for it gets somehow swallowed by the next-lower-level driver or so.
It is also hard to say what kind of driver you are writing here (and yes, this can be important).
Try not just breaking at a particular point before or after the fact but rather follow the stack that the IRP would travel downwards in the target device object's stack.
But thinking about it, you probably aren't attached to the stack at all (for whatever reason). Could it be that you actually should be using IoGetDiskDeviceObject instead, in order to get the actual underlying device object (at the bottom of the stack) and not a reference to the top-level object attached?
Last but not least: don't forget you can also ask this question over on the OSR mailing lists. There are plenty of seasoned professionals there who may have run into the exact same problem (assuming you are doing all of the things correct that I asked about).
thanks everyone , I solve this problem; what cause this problem is it becoming synchronous; when I
call IoGetDeviceObjectPointer , it will generate an new Irp IRP_MJ_WRITER which pass though from high level, when this irp reach my driver, my thread which handle IRP is the same thread whilch call IoGetDeviceObjectPointer ,so it become drop-dead halt;

Resources