How can I evaluate an s-expression only by the first term?
(define (fn x y) (print x) (print y))
(eval '(fn a b))
I am trying to evaluate something like this on a bigger expression but the interpreter is complaining that a and b variables don't exist (unbound variable a).
Is there something I can do to leave symbols as they are?
I have been trying to find information about this but I can't find it anywhere.
How about the following?
(let ((expr '(fn a b)))
(cons (eval (car expr)) (cdr expr)))
But please note that if you have to rely on eval, you're almost certainly doing things wrong.
Related
In the following scheme code, accumulate does right-fold. When I tried to run using mit scheme. I ran into following error:
Transformer may not be used as an expression: #[classifier-item 13]
Classifier may not be used as an expression: #[classifier-item 12]
I google searched but didn't find useful information. Is it related a macro?
; This function is copied from SICP chapter 2
(define (accumulate op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(accumulate op initial (cdr sequence)))))
; works as expected
(accumulate
(lambda (x y) (or x y)) ; replace or with and also works
#f
'(#t #f #t #f #f)
))
; does not work
; error: Classifier may not be used as an expression: #[classifier-item 12]
(accumulate
or
#f
'(#t #f #t #f #f)
))
; does not work
; error: Transformer may not be used as an expression: #[classifier-item 13]
(accumulate
and
#f
'(#t #f #t #f #f)
))
Macros can be passed around in some languages, but not in Scheme and Common Lisp. The reason is that macros should be able to be expanded ahead of time. eg.
(define (cmp a b)
(cond ((< a b) -1)
((> a b) 1)
(else 0)))
Now a compiling Scheme will expand each node recursively replacing it with the expansion until it is no change:
(define (cmp a b)
(if (< a b)
(begin -1)
(cond ((> a b) 1)
(else 0))))
(define (cmp a b)
(if (< a b)
-1
(cond ((> a b) 1)
(else 0))))
(define (cmp a b)
(if (< a b)
-1
(if (> a b)
(begin 1)
(cond (else 0)))))
(define (cmp a b)
(if (< a b)
-1
(if (> a b)
1
(cond (else 0)))))
; end result
(define (cmp a b)
(if (< a b)
-1
(if (> a b)
1
0)))
From this point of cond doesn't need to exist in the underlying language at all since you'll never ever use it, but how would this have to be implemented to work:
(define (test syntax a b)
(syntax a b))
(test or #f #t)
For this to work the underlying language needs to know what or is even after expansion since syntax would need to be bound to or and then the transformation can happen. But when the code runs the macro expansion has already happened and in most implementations you would see something indicating that or is an unbound variable. It seems like MIT Scheme has added error checking for top level syntax syntax that will fire an error if you don't override it. Eg. if you add this you will not see any problems whatsoever:
(define (or a b) (if a a b))
(define (and a b) (if a b #f))
Now after those lines any reference to and and or are not the syntax, but these procedures. There are no reserved words in Scheme so if you do something crazy, like defining define you just cannot use it for the rest f that scope:
(define define display) ; defiens define as a top level variable
(define define) ; prints the representation of the function display
(define test 10) ; fail since test is an undefined variable so it cannot be displayed.
I created a interpreted lisp with macros that actually could be passed, but it isn't very useful and the chances of optimization is greatly reduced.
Yes it's related to the macros / special forms like and and or.
You can make it work simply by wrapping them as lambdas, (accumulate (lambda (a b) (or a b)) ...) -- the results will be correct but of course there won't be any short-circuiting then. The op is a function and functions receive their arguments already evaluated.
Either hide the arguments behind lambdas ((lambda () ...)) and evaluate them manually as needed, or define specific versions each for each macro op, like
(define (accumulate-or initial sequence)
(if (null? sequence)
initial
(or (car sequence)
(accumulate-or initial (cdr sequence)))))
Here sequence will still be evaluated in full before the call to accumulate-or, but at least the accumulate-or won't be working through it even after the result is already known.
If sequence contains some results of heavy computations which you want to avoid in case they aren't needed, look into using "lazy sequences" for that.
I'm reading The Little Schemer. And thanks to my broken English, I was confused by this paragraph:
(cond ... ) also has the property of not considering all of its
arguments. Because of this property, however, neither (and ... ) nor
(or ... ) can be defined as functions in terms of (cond ... ), though
both (and ... ) and (or ... ) can be expressed as abbreviations of
(cond ... )-expressions:
(and a b) = (cond (a b) (else #f)
and
(or a b) = (cond (a #t) (else (b))
If I understand it correctly, it says (and ...) and (or ...) can be replaced by a (cond ...) expression, but cannot be defined as a function that contains (cond ...). Why is it so? Does it have anything to do with the variant arguments? Thanks.
p.s. I did some searching but only found that (cond ...) ignores the expressions when one of its conditions evaluate to #f.
Imagine you wrote if as a function/procedure rather than a user defined macro/syntax:
;; makes if in terms of cond
(define (my-if predicate consequent alternative)
(cond (predicate consequent)
(else alternative)))
;; example that works
(define (atom? x)
(my-if (not (pair? x))
#t
#f))
;; example that won't work
;; peano arithemtic
(define (add a b)
(my-if (zero? a)
b
(add (- a 1) (+ b 1))))
The problem with my-if is that as a procedure every argument gets evaluated before the procedure body gets executed. thus in atom? the parts (not (pair? x)), #t and #f were evaluated before the body of my-if gets executed.
For the last example means (add (- a 1) (+ b 1)) gets evaluated regardless of what a is, even when a is zero, so the procedure will never end.
You can make your own if with syntax:
(define-syntax my-if
(syntax-rules ()
((my-if predicate consequent alternative)
(cond (predicate consequent)
(else alternative)))))
Now, how you read this is the first part is a template where the predicate consequent and alternative represent unevaluated expressions. It's replaced with the other just reusing the expressions so that:
(my-if (check-something) (display 10) (display 20))
would be replaced with this:
(cond ((check-something) (display 10))
(else (display 20)))
With the procedure version of my-if both 10 and 20 would have been printed. This is how and and or is implemented as well.
You cannot define cond or and or or or if as functions because functions evaluate all their arguments. (You could define some of them as macros).
Read also the famous SICP and Lisp In Small Pieces (original in French).
I'm reading The Little Schemer. And thanks to my broken English, I was confused by this paragraph:
(cond ... ) also has the property of not considering all of its
arguments. Because of this property, however, neither (and ... ) nor
(or ... ) can be defined as functions in terms of (cond ... ), though
both (and ... ) and (or ... ) can be expressed as abbreviations of
(cond ... )-expressions:
(and a b) = (cond (a b) (else #f)
and
(or a b) = (cond (a #t) (else (b))
If I understand it correctly, it says (and ...) and (or ...) can be replaced by a (cond ...) expression, but cannot be defined as a function that contains (cond ...). Why is it so? Does it have anything to do with the variant arguments? Thanks.
p.s. I did some searching but only found that (cond ...) ignores the expressions when one of its conditions evaluate to #f.
Imagine you wrote if as a function/procedure rather than a user defined macro/syntax:
;; makes if in terms of cond
(define (my-if predicate consequent alternative)
(cond (predicate consequent)
(else alternative)))
;; example that works
(define (atom? x)
(my-if (not (pair? x))
#t
#f))
;; example that won't work
;; peano arithemtic
(define (add a b)
(my-if (zero? a)
b
(add (- a 1) (+ b 1))))
The problem with my-if is that as a procedure every argument gets evaluated before the procedure body gets executed. thus in atom? the parts (not (pair? x)), #t and #f were evaluated before the body of my-if gets executed.
For the last example means (add (- a 1) (+ b 1)) gets evaluated regardless of what a is, even when a is zero, so the procedure will never end.
You can make your own if with syntax:
(define-syntax my-if
(syntax-rules ()
((my-if predicate consequent alternative)
(cond (predicate consequent)
(else alternative)))))
Now, how you read this is the first part is a template where the predicate consequent and alternative represent unevaluated expressions. It's replaced with the other just reusing the expressions so that:
(my-if (check-something) (display 10) (display 20))
would be replaced with this:
(cond ((check-something) (display 10))
(else (display 20)))
With the procedure version of my-if both 10 and 20 would have been printed. This is how and and or is implemented as well.
You cannot define cond or and or or or if as functions because functions evaluate all their arguments. (You could define some of them as macros).
Read also the famous SICP and Lisp In Small Pieces (original in French).
I am trying to write a function that can check whether or not some input is a quotation for a syntax checker.
I have the following code:
(define is-quote-expression?
(lambda (v)
(equal? (car v) 'quote)
(is-quotation? (cdr v)))))
(define is-quotation?
(lambda (v)
(or (number? v)
(boolean? v)
(char? v)
(string? v)
(symbol? v)
(null? v)
(and (pair? v)
(is-quotation? (car v))
(is-quotation? (cdr v)))))
When I try to evaluate, I get the following:
(is-quote-expression? '1)
#f
(is-quote-expression? (cons 'quote 1))
#t
I think my TA told me that the Scheme environment replaced all "'" with "'quote", however, this does not seem to be the case. We are running Petite Chez Scheme.
What am I not seeing?
Thanks in advance.
There are a couple of problems with your code, for starters the (lambda (pair? v) part in is-quote-expression? is almost certainly a mistake (you're defining a lambda with two parameters called pair? and v).
Also, I believe you intended to call is-quotation? from is-quote-expression? only if v isn't a pair, so it doesn't make sense to ask again if (pair? v) in is-quotation?. And who said that a pair is a quotation only if both its car and cdr are quotations?
Here, I believe this is what you intended:
(define is-quote-expression?
(lambda (v)
(if (pair? v)
(equal? (car v) 'quote)
(is-quotation? v))))
(define is-quotation?
(lambda (v)
(or (number? v)
(boolean? v)
(char? v)
(string? v)
(symbol? v)
(null? v))))
I agree with Óscar's post, though, is-quote-expression? accepts a list rather than a pair and returns whether it was a quotation.
(define is-quote-expression?
(lambda (v)
(and (proper-list-of-given-length? v 2)
(equal? (car v) 'quote)
(is-quotation? (cadr v)))))
Also, your original question shows some confusion as to what quote actually does. This is what really should happen:
> (is-quote-expression? '1)
#f
> (is-quote-expression? (cons 'quote 1))
#f
> (is-quote-expression? (quote 42))
#f
> (is-quote-expression? (quote (quote 42)))
#t
Note how the built-in quote procedure simply returns what it is passed. In the case of (quote 42) it simply returns 42. But (quote (quote 42)) returns (quote 42), which is what you wish to pass to is-quote-expression?.
The behavior of quote is specified in R6RS, appendix A.3. For '1, the relevant rule is 6sqv:
(store (sf1 ...) S1[ 'sqv1 ]) → (store (sf1 ...) S1[ sqv1 ])
Time to break this down.
The "S → T" notation defines one step in evaluating a term, where "S" evaluates to "T".
Since store and the sf1 non-terminals appear the same on both the left and right sides, you don't need to understand them to understand how '1 evaluates. If you need something, think of store as "storage environment" and the sfn as pairs of names and values; (store ((x 1) (y 2)) S) means the identifier x is associated with the value 1 and y with 2 when evaluating the term S.
If you're not familiar with the S[e] notation, it refers to a term with one "hole" (an term with a [] in it) filled with e. There are two related syntax elements: terms with holes (S[]) and terms with a hole filled by a value (S[e]). Holes are a little (but only a little) like unnamed variables. One important difference is that a term is allowed only one hole. Holes are perhaps best explained by example. All of the following are S[]:
(+ [] 1 2)
(list [] 'a "foo")
(cond ((= x 0) [])
((> x 0) 1)
(else -1))
Note that a hole can only appear where a sub-term is syntactically valid; [] 2) is not a term-with-hole. S[0] would be a term with 0 substituted into the hole:
(+ 0 1 2)
(list 0 'a "foo")
(cond ((= x 0) 0)
((> x 0) 1)
(else -1))
When a value is given for a hole, the term S[] is also called a "context". This comes from one of the primary uses for terms-with-holes: to match any term containing the given value. S[e] is any term that contains e as a valid sub-term, so S[] is the context that e appears in. In short, S1['sqv1] is a stand-in for any term that contains a quote.
(+ 'foo 1 2)
(list 'bar 'a "foo")
(cond ((= x 0) 'baz)
((> x 0) 1)
(else -1))
Note the second term provides two different contexts for quote-terms: (list [] 'a "foo"), (list 'bar [] "foo"). This suggests that you shouldn't think of holes too much as just being unnamed variables.
If you're wonder why context terms and holes are used, they're an alternative to recursive definitions. Without contexts, → would have to be defined recursively over the structure of terms (Scheme's grammar defines the structure). Substitution in lambda calculus is an example of structural recursion, as are any tree-processing functions you might define in Scheme (though Scheme syntax is quite different than the syntax used to define → and lambda calculus substitution).
(define (tree-depth tree)
(if (pair? tree)
(max (tree-depth (car tree))
(tree-depth (cdr tree)))
1
) )
Next, let's examine the meaning of sqv, which is short for "self-quoting values". This is a non-terminal from the Scheme grammar, given in appendix A.2.
sqv ::= n | #t | #f
n ::= [numbers]
sqv is simply a number or boolean.
All together, the 6sqv evaluation rule means that a quoted number or boolean evaluates to the number or boolean; the quote is simply discarded.
What this signifies for your homework is that you can't tell the difference between 1 and '1 with a normal function, since sub-terms are evaluated before the function is called. You'll need a macro.
Why go through all this just to say that "'1 evaluates to 1"? Firstly, answering "why" takes more than answering "what". Also, it will hopefully help you go beyond the question, learning a little bit how to read Scheme's formal semantics, give you a taste of computational theory concepts and lead to many more questions.
How to write a program in scheme that takes an arbitrary
sexpression consisting of integers and which returns an sexpression that is identical to
the original but with all the integers doubled?
We want a procedure that takes an S-expression as input, and outputs an S-expression with the same structure, but where each integer is doubled; generally, a procedure to map S-expressions:
(define (double x)
(if (number? x)
(* x 2)
x)))
(define (sexp-map op sexp)
...)
(sexp-map double some-sexpression)
The S-expression we get (SEXP) is going to be either an atom, in which case the result is (OP SEXP), or a list of S-expressions. We might think to map OP across SEXP in this case, but S-expressions nest arbitrarily deep. What we should actually do is map a procedure that will transform each element in the smaller S-expression with OP. Well would you look at that, that's just another way to describe of the goal of the procedure we're currently trying to write. So we can map SEXP-MAP across SEXP.
Well, no we can't actually, because SEXP-MAP needs to be called with two arguments, and MAP will only give it the one. To get around that, we use a helper procedure F of one argument:
(define (sexp-map op sexp)
(define (f x)
(if (list? x)
(map f x)
(op x)))
(f sexp))
F winds up doing all the real work. SEXP-MAP is reduced to being a facade that's easier to use for the programmer.
It sounds like what you want is to find each integer in the s-expression, then double it, while keeping the rest of it the same.
If you're not aware, s-expressions are just lists that may happen to contain other lists, and it makes sense to deal with them in levels. For instance, here's a way to print all the values on level one of an s-expression:
(define (print-level-one sexp)
(display (car sexp))
(print-level-one (cdr sexp)))
This will end up calling display on the car of every part of the s-expression.
You could do something similar. You'll need the functions integer? and pair? to check whether something is an integer, which should be doubled, or another list, which should be treated just like the top-level list.
(Note: I'm being deliberately vague because of the comment about homework above. If you just want the answer, rather than help figuring out the answer, say so and I'll change this.)
An Sexp of numbers is one of
-- Number
-- ListOfSexp
A ListOfSexp is one of
-- empty
-- (cons Sexp ListOfSexp)
So, you'll need one function to handle both of those data definitions. Since the data definitions cross-reference each other, the functions will do the same. Each individual function is pretty straight forward.
(define (double E)
(cond ((null? E) '())
((list? (car E)) (cons (double (car E)) (double (cdr E))))
((number? E) (list E))
(else (cons (* 2 (car E)) (double (cdr E))))
))
(map (lambda (x) (* x 2)) '(1 2 3 4 5)) => '(2 4 6 8 10)
What does it do? (lambda (x) (* x 2)) takes a number and doubles it, and map applies that function to every element of a list.
Edit: Oh, but it won't go into trees.
(define double
(lambda (x)
(cond ((null? x) (list))
((list? (car x)) (cons (double (car x)) (double (cdr x))))
(else (cons (* 2 (car x)) (double (cdr x)))))))
EDIT
Fixed this. Thanks to Nathan Sanders for pointing out my initial oversight concerning nested lists.