How to use "file:" parameter in gauge bdd - validation

I'm trying to make use of the "file" special parameter in gauge to be able to feed in a json file.
is this feasible or does the file param only work for text files?
are there any examples i could follow on how the file parameter flows downstream into the step definitions or is this not the case.
[it wasn't clear from the documentation on how these special parameters could be used at a step definition level and the gauge documentation around these topics are high level and not detailed.]

file parameters work for text files, but one could argue that json is also a text file (if you ignore the types).
You could read the json as string, and unmarshall it in the step implementation.

Related

How can I auto generate inputs.tf and outputs.tf variables when working with Terraform?

Note: Please see the #### UPDATE ### section below. I've heavily modified the question for clarity on what I'm trying to achieve, but added it as an addendum rather than rewrite the question.
As my infrastructure grows, adding input variables in my variables.tf files and then syncing those values to output variables in my outputs.tf file is now impossible to do manually. Not only is it taking up a lot of unnecessary time, probably more time is spent going back and fixing the ones that terraform validate told me that I missed by human error. This is especially true when building / using modules whose arguments add an additional layer to manage.
There has to be a better way? Here is what I want to achieve.
Let's say I'm creating an Azure AKS Kubernetes cluster. The Terraform resource is azurerm_kubernetes_cluster.
Only 8 arguments are required to create a base install, but there are almost 250 additional ones. They all have default values. Per the documentation page, they also already have fantastic descriptions. (I'm tired of copying and pasting into my variables { description = "this"} block.)
The information is there in the documentation. terraform plan also has knowledge of every single additional one because it of course comes up in the pre-apply plan. (known after apply) means its optional, but will have a default value.
In my dream world, I'd run this hypothetical command sequence:
terraform plan
terraform document <- Here it auto generates every argument as a variables block and inserts it into variables.tf. It also auto generates every possible output "out_putable" {} block and inserts it into outputs.tf.
terraform apply -update-inputs -update-outputs <- Here everything that was optional (known after apply) is now known and it should auto update variables.tf and outputs.tf accordingly. Adding a -update-modules flag lets it take care of that additional layer introduced by using modules.
This feels like a problem that has been addressed before. Before I write a custom tool that parses Terraform web docs and the output of terraform show, is there already a way to do this? Terraform-docs is the closest I've come to finding a solution for README.md. If it can do what I need, I haven't figure it out yet.
How can I automate all this?
############
UPDATE
############
This article and video is spot-on when it comes to Terraform's evolution in an organization. My organization is somewhere between late-stage pattern 3 and early 5. As we decompose our "Terralith" we have inconsistencies among teams (patterns, naming conventions, variable and argument choices etc). These are starting to cause errors in CI/CD forcing a ticket-review process that is slowing things down.
All resources have required and optional arguments. But in my organization, we have, for example, additional optional arguments that are required for us.
Scenario: Dev A in Japan creates a resource, forgets an optional variable or two or names them something obscure, etc. Dev B in America is blocked until they can convene and discuss. Given time zones, language differences, ticket review, this one issue is now a week or more delayed.
I need to automate this and create exact consistency so that Dev A starts out with exactly what Dev B would start with or is expecting; and, what CI/CD tests are expecting - templating the initial process, if you will. In other words, I need to remove the human element of manually creating main.tf, variables.tf, outputs.tf, etc.
Here are thoughts on how to achieve this:
Use Golang to autogenerate the files by querying the API
How can I query the API to get a list of all required arguments for a specific resource?
I found that I can query for provider information, but I can't find info to retrieve resource information. My thinking is when a developer wants to create a new resource, He'll run a go or typescript to generate the manifest files along with expected naming conventions, and populate main.tf, variables.tf, outputs.tf, etc, with exactly what data that everyone is expecting. I'm looking form something like curl registry.terraform.io/providers/hashicorp/azurerm/v2.99/resource_group?required=yes This should show me all required arguments along with descriptions and other info I can use straight from the API.
Use CDKTF to generate an HCL manifest.tf file from JSON
How can I use CDKTF to generate an HCL .tf file?
CDKTF is EXACTLY what I'm looking for - except in reverse. HCL is seamlessly compatible with JSON. Running cdktf synth creates ./out/cdk.tf.out I'm so close! How do I turn that file into main.tf?!?
The goal here is to have a master file from which all future manifest files are derived. Whether we use azurerm_kubernetes_cluster 1 time or 1000 times, I know for certain that every argument, every variable name, every desired output is exactly the same. If a chance is needed in our desired structure, it will be updated at the JSON level, and CI/CD can ensure those changes are propagated across instances of its use.
I know that I can use the cdk.out.tf file as a drop in replacement for a module, but I don't want my team members to have to learn typescript or how to read json. If I can create a templatized JSON file containing exactly what I'm expecting users to start with, and if they can run some command like cdktf convert cdk.tf.out --HCL output-file.tf then I've accomplished my goal.
If cdktf synth can create an HCL JSON file, and cdktf convert can take a manifest.tf file and turn it into HCL JSON, can't it do the exact opposite? Turn the HCL JSON file into the human-readable, declarative, manifest.tf file?
Perhaps think of it this way. Terraform has a required file structure for a module if it's to be allowed into the module registry. I'm trying to create a similar required structure for each of the resources our organization uses regardless of when and where it's used.
If your goal is to derive input variables and output values from resource type schemas then Terraform can provide you with the information to do so.
In the working directory of a configuration that already uses the provider whose resource type you want to use, run the following command:
terraform providers schema -json
The result contains a JSON description of all of the resource types available in the providers for the current configuration, and for each one the metadata about its attributes, including the type constraint information and descriptions for each one.
From that you can generate whatever other files you need based on that information.
Note that if you are intending to build modules which export the entire surface area (all inputs and all outputs) of a particular resource type the Terraform documentation explicitly recommends against this, suggesting to just use the resource type directly instead since such a module would often not offer sufficient benefit to outweigh the additional complexity and maintenance overhead it implies:
In principle any combination of resources and other constructs can be factored out into a module, but over-using modules can make your overall Terraform configuration harder to understand and maintain, so we recommend moderation.
A good module should raise the level of abstraction by describing a new concept in your architecture that is constructed from resource types offered by providers.
For example, aws_instance and aws_elb are both resource types belonging to the AWS provider. You might use a module to represent the higher-level concept "HashiCorp Consul cluster running in AWS" which happens to be constructed from these and other AWS provider resources.
We do not recommend writing modules that are just thin wrappers around single other resource types. If you have trouble finding a name for your module that isn't the same as the main resource type inside it, that may be a sign that your module is not creating any new abstraction and so the module is adding unnecessary complexity. Just use the resource type directly in the calling module instead.
I've got the same question and develop a small bash script to create output definitions based on module code
This code required the hcledit tool to extract blocks from hcl code
#!/usr/bin/env bash
set -o pipefail
_hcledit=$(which hcledit)
for tf_file in $(ls *.tf); do
cat $tf_file | $_hcledit block list | while read line; do
block_type="${line%%.*}"
line="${line#*.}"
case $block_type in
locals|output|variable|data) continue; break ;;
module)
output_name=$line
output_description="Module '$output_name' attributes"
output_value="$block_type.$output_name"
;;
resource)
label_kind="${line%.*}"
label_name="${line#*.}"
output_name="${label_kind}_${label_name//[\-]/_}"
output_description="Resource '$label_kind.$label_name' attributes"
output_value="$label_kind.$label_name"
;;
esac
cat <<-EOT
output "$output_name" {
description = "$output_description"
value = $output_value
}
EOT
done
done

How does file convertors work in general like word to pdf, XML to json, word to txt etc

I've used many types of file convertor like word to pdf, XML to json, word to txt etc.
How do they work in backend? Is there some specific guidelines each of them follow? Are there some similarity in the way they are implemented.
I tried searching it but most of the articles take me to the web app that can convert the doc, but none of them gives clarity on how it's done.
All of them work by parsing the first document into a data structure. Then generate a document in the other format from that data structure using recursion.
Parsing itself is a giant topic that people take courses on in computer science. But long story short, it proceeds by breaking the document into tokens, and then fitting the tokens into a parse tree using one of a standard set of methods. They have all sorts of fancy names like Recursive Descent and LALR(1). That's where most of the theory you'd want to learn is.
For example if you're writing a JSON to XML converter, you'd first need to parse that JSON. A JSON Parser shows how you could write that, from scratch, using recursive descent. Once written you just need to write a recursive function that takes each data type and does something appropriate with it to generate text in the format that you want.
Incidentally you can also write a "document converter" that converts from a document format to the same document format. Why would someone want to do that? The two most common use cases are to prettify or minify code. Despite the fact that only one format is being dealt with, the principles of how you do it are exactly the same.

How to replace file content which has special character, with dynamic value in JMeter

Can I replace a file content with dynamic content even if the file has special characters.
This is what I get when I try to do that.
and this is how my file looks like
[{"someName": "M`o\c\k","someNumber": "${randomNumber}"}]
and I have a variable configured for ${randomNumber}.
Please check if the below can met your requirement.
Random Variable Config:-
Dummy sampler for the json
JSR223 Post processor to put the dummy response in a variable
Used the variable in HTTP. This is just for demo. Probably, in your case it will be websocket.
Output
Also, groovy provide json support. Below you can check a similar solution based on groovy. Where it is mentioned to escape special character for json.
Jmeter Groovy how can I replace this string with {
Hope this helps.
I was able to solve my scenario by adding a json library to my JMeter, JSON.Simple. I added the jar to my jmeter classpath. Then I was able to a BeanShell PreProcessor.
The Json simple object will not escape the special characters and its much easier to manipulate. So that was great for my use case.

Partial Indexing of an XML file (Bleve)

I am evaluating a couple different libraries to see which one will best fit what I need.
Right now I am looking at Bleve, but I am happy to use any library.
I am looking to index full files except specific ones which are in XML format. For those I only want Bleve to index specific tags as most of the tags are worthless to search. I am trying to evaluate if this is possible but, being new to Bleve, I am not sure what part I need to customize.
The documentation is very good, but I can't seem to find this answer. All I need is an explanation with keywords and steps, no code is required, I just need a push as I have spent hours spinning my wheels with google searches and I am getting no where.
There are probably many ways to approach this. Here's one.
Bleve indexes documents which are collections of key/value metadata pairs.
In your case, a document could be represented by 2 key/value pairs: name of .xml file (to uniquely identify the document) and content of the file.
type Doc struct {
Name string
Body string
}
The issue is that body is XML and Bleve doesn't support XML out-of-the-box.
A way to address it would be to pre-process XML file by stripping unwanted tags and content. You can do it using encoding/xml standard library.
For an example of a similar task you can see the code of https://github.com/blevesearch/fosdem-search/
In there they index file in custom format (https://github.com/blevesearch/fosdem-search/blob/master/fosdem.ical) by parsing it into a format they can submit to Bleve for indexing (https://github.com/blevesearch/fosdem-search/blob/master/ical.go).

Searching through the protocol buffer file

I'm new to protocol buffers and I was wondering whether it was possible to search a protocol buffers binary file and read the data in a structured format. For example if a message in my .proto file has 4 fields I would like to serialize the message and write multiple messages into a file and then search for a particular field in the file. If I find the field I would like to read back the message in the same structured format as it was written. Is this possible with protocol buffers ? If possible any sample code or examples would be very helpful. Thank you
You should treat protobuf library as one serialization protocol, not an all-in-one library which supports complex operations (such as querying, indexing, picking up particular data). Google has various libraries on top of open-sourced portion of protobuf to do so, but they are not released as open source, as they are tied with their unique infrastructure. That being said, what you want is certainly possible, yet you need to write some code.
Anyhow, some of your requirements are:
one file contains various serialized binaries.
search a particular field in each serialized binary and extract that chunk.
There are several ways to achieve them.
The most popular way for serial read/write is that the file contains a series of [size, type, serialization output]. That is, one serialized output is always prefixed by size and type (either 4/8 byte or variable-length) to help reading and parsing. So you just repeat this procedure: 1) read size and type, 2) read binary with given size, 3) parse with given type 4) goto 1). If you use union type or one file shares same type, you may skip type. You cannot drop size, as there is no way know the end of output by itself. If you want random read/write, other type of data structure is necessary.
'search field' in binary file is more tricky. One way is to read/parse output one by one and to check the existance of field by HasField(). It is most obvious and slow yet straightforward way to do so. If you want to search field by number (say, you want to search 'optional string email = 3;'), thus search by binary blob (like 0x1A, field number 3, wire type 2), it is not possible. In a serialized binary stream, field information is saved merely a number. Without an exact context (.proto scheme or binary file's structure), the number alone doesn't mean anything. There is no guarantee that 0x1A is from field information, or field information from other message type, or actually number 26, or part of other number, etc. That is, you need to maintain the information by yourself. You may create another file or database with necessary information to fetch particular message (like the location of serialization output with given field).
Long story short, what you ask is beyond what open-sourced protobuf library itself does, yet you can write them with your requirements.
I hope, this is what you are looking for:
http://temk.github.io/protobuf-utils/
This is a command line utility for searching within protobuf file.

Resources