For example I have this code:
package main
import (
"fmt"
)
func main() {
c1 := make(chan interface{})
close(c1)
c2 := make(chan interface{})
close(c2)
var c1Count, c2Count int
for i := 1000; i >= 0; i-- {
select {
case <-c1:
c1Count++
case <-c2:
c2Count++
}
}
fmt.Printf("c1Count: %d\nc2Count: %d\n ", c1Count, c2Count)
}
When running, the output will be:
c1Count: 513
c2Count: 488
The thing I don't know is: we create c1 and c2 channel without doing anything. Why in select/case block, c1Count and c2Count can increase value ?
Thanks
The Go Programming Language Specification
Close
After calling close, and after any previously sent values have been
received, receive operations will return the zero value for the
channel's type without blocking. The multi-valued receive operation
returns a received value along with an indication of whether the
channel is closed.
You are counting zero values.
For example,
package main
import (
"fmt"
)
func main() {
c1 := make(chan interface{})
close(c1)
c2 := make(chan interface{})
close(c2)
var c1Count, c2Count int
var z1Count, z2Count int
for i := 1000; i >= 0; i-- {
select {
case z1 := <-c1:
c1Count++
if z1 == nil {
z1Count++
}
case z2 := <-c2:
c2Count++
if z2 == nil {
z2Count++
}
}
}
fmt.Printf("c1Count: %d\nc2Count: %d\n", c1Count, c2Count)
fmt.Printf("z1Count: %d\nz2Count: %d\n", z1Count, z2Count)
}
Playground: https://play.golang.org/p/tPRkqXrAFno
Output:
c1Count: 511
c2Count: 490
z1Count: 511
z2Count: 490
The Go Programming Language Specification
For statements
For statements with range clause
For channels, the iteration values produced are the successive values
sent on the channel until the channel is closed. If the channel is
nil, the range expression blocks forever.
Close is useful with a for statement with a range clause.
I am working with Go concurrency and have the following code:
package main
import (
"fmt"
"runtime"
"sync"
)
func main() {
runtime.GOMAXPROCS(1)
var wg sync.WaitGroup
wg.Add(2)
fmt.Println("Starting Goroutines")
go func() {
defer wg.Done()
for count := 0; count < 3; count++ {
for char := 'a'; char < 'a'+26; char++ {
fmt.Printf("%c", char)
}
}
fmt.Println()
}()
go func() {
defer wg.Done()
for count := 0; count < 3; count++ {
for char := 'A'; char < 'A'+26; char++ {
fmt.Printf("%c", char)
}
}
fmt.Println()
}()
fmt.Println("Waiting to Finish")
wg.Wait()
fmt.Println("Terminating")
}
My output is:
Starting Goroutines
Waiting to Finish
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz
Terminating
My problem is I declare the first goroutine to display lower case letters and the second goroutine to display upper case letters. Shouldn't the output be lowercase first then uppercase?
Any explanation would be helpful.
NOTE: This code came from the Go In Action ebook and i didnt fully understand their explanation.
Your output can vary each time you execute the program. The execution order of go routines is not guaranteed. Therefore your output is not deterministic.
I'm trying launch goroutines in an infinite loop until I get the response I'm looking for but the select is unreachable if I change for i := 0; i < 10; i++ {} to for {}. What's a pattern for solving this?
package main
import (
"fmt"
"math/rand"
"time"
)
func myFunc() float64 {
c := make(chan float64)
for i := 0; i < 10; i++ {
go func() {
var value float64
value = someOp()
if value > .9 {
c <- value
}
}()
}
// unreachable code the if the for loop above is infinite
for {
select {
case x := <-c:
return x
default:
}
}
}
func someOp() float64 {
rand.Seed(time.Now().UnixNano())
return rand.Float64()
}
func main() {
fmt.Println(myFunc())
}
Starting an unlimited number of goroutines is usually not a good idea. A better approach is to start a fixed number of goroutines that loop looking for an answer. Return from these goroutines when an answer is found.
func myFunc() float64 {
c := make(chan float64, 1) // Size 1 prevents race between main goroutine and workers
done := make(chan struct{})
defer close(done)
// Start a fixed number of goroutines
for i := 0; i < 10; i++ {
go func() {
for {
select {
case <-done:
// myfunc exited with result, return from this goroutine
return
default:
var value float64
value = someOp()
if value > .9 {
select {
case c <- value:
// This is first goroutine to send a value
default:
// Another goroutine sent a value
}
return
}
}
}
}()
}
return <-c
}
https://play.golang.org/p/SRpeT8k34eA
I am trying the fan in - fan out pattern with a factorial problem. But I am getting:
fatal error: all goroutines are asleep - deadlock!
and unable to identify the reason for deadlock.
I am trying to concurrently calculate factorial for 100 numbers using the fan-in fan-out pattern.
package main
import (
"fmt"
)
func main() {
_inChannel := _inListener(generator())
for val := range _inChannel {
fmt.Print(val, " -- ")
}
}
func generator() chan int { // NEED TO CALCULATE FACTORIAL FOR 100 NUMBERS
ch := make(chan int) // CREATE CHANNEL TO INPUT NUMBERS
go func() {
for i := 1; i <= 100; i++ {
ch <- i
}
close(ch) // CLOSE CHANNEL WHEN ALL NUMBERS HAVE BEEN WRITTEM
}()
return ch
}
func _inListener(ch chan int) chan int {
rec := make(chan int) // CHANNEL RECEIVED FROM GENERATOR
go func() {
for num := range ch { // RECEIVE THE INPUT NUMBERS FROM GENERATOR
result := factorial(num) // RESULT IS A NEW CHANNEL CREATED
rec <- <-result // MERGE INTO A SINGLE CHANNEL; rec
close(result)
}
close(rec)
}()
return rec // RETURN THE DEDICATED CHANNEL TO RECEIVE ALL OUTPUTS
}
func factorial(n int) chan int {
ch := make(chan int) // MAKE A NEW CHANNEL TO OUTPUT THE RESULT
// OF FACTORIAL
total := 1
for i := n; i > 0; i-- {
total *= i
}
ch <- total
return ch // RETURN THE CHANNEL HAVING THE FACTORIAL CALCULATED
}
I have put in comments, so that it becomes easier to follow the code.
I'm no expert in channels. I've taking on this to try and get more familiar with go.
Another issue is the int isn't large enough to take all factorials over 20 or so.
As you can see, I added a defer close as well as a logical channel called done in the generator func. The rest of the changes probably aren't needed. With channels you need to make sure something is ready to take off a value on the channel when you put something on a channel. Otherwise deadlock. Also, using
go run -race main.go
helps at least see which line(s) are causing problems.
I hope this helps and isn't removed for being off topic.
I was able to remove the deadlock by doing this:
package main
import (
"fmt"
)
func main() {
_gen := generator()
_inChannel := _inListener(_gen)
for val := range _inChannel {
fmt.Print(val, " -- \n")
}
}
func generator() chan int { // NEED TO CALCULATE FACTORIAL FOR 100 NUMBERS
ch := make(chan int) // CREATE CHANNEL TO INPUT NUMBERS
done := make(chan bool)
go func() {
defer close(ch)
for i := 1; i <= 100; i++ {
ch <- i
}
//close(ch) // CLOSE CHANNEL WHEN ALL NUMBERS HAVE BEEN WRITTEM
done <- true
}()
// this function will pull off the done for each function call above.
go func() {
for i := 1; i < 100; i++ {
<-done
}
}()
return ch
}
func _inListener(ch chan int) chan int {
rec := make(chan int) // CHANNEL RECEIVED FROM GENERATOR
go func() {
for num := range ch { // RECEIVE THE INPUT NUMBERS FROM GENERATOR
result := factorial(num) // RESULT IS A NEW CHANNEL CREATED
rec <- result // MERGE INTO A SINGLE CHANNEL; rec
}
close(rec)
}()
return rec // RETURN THE DEDICATED CHANNEL TO RECEIVE ALL OUTPUTS
}
func factorial(n int) int {
// OF FACTORIAL
total := 1
for i := n; i > 0; i-- {
total *= i
}
return total // RETURN THE CHANNEL HAVING THE FACTORIAL CALCULATED
}
package main
import (
"fmt"
)
func main(){
f,val,val1:=fibonacci()
fmt.Println(val,val1)
for i:=0;i<=10;i++ {
fmt.Println(f(i),val,val1)
}
_,val,val1=fibonacci()
fmt.Println(val,val1)
}
func fibonacci()(func(n int)int,int,int){
var val int
var val1 int
f:=func(n int)int{
if n==0||n==1{
val,val1=1,1
}else{
val,val1=val+val1,val
}
return val
}
fmt.Println("fibonacci val =",val,"val1 =",val1)
return f,val,val1
}
Here is my code on sloving fibonacci without using recursion when I
read about lambda function/closure. And the Go Documentary says a
closure will capture some external state. My understanding is the
closure will keep a copy of state of the function which it is
declared. These states are just copies whatever I do on them won't
modify the original, is that so?
from your test code here: https://play.golang.org/p/pajT2bAIe2
your fibonacci function is working out the nth numbers in the sequence provided it's called in an incremental fashion as you are doing. but the values you return from the initial call to fibonacci are not pointers (or references) to those integer values they are just the values of those integers at that time, think of them as being copied out of the function, try using integer pointers instead like this: https://play.golang.org/p/-vLja7Fpsq
package main
import (
"fmt"
)
func main() {
f, val, val1 := fibonacci()
fmt.Println(val, val1)
for i := 0; i <= 10; i++ {
fmt.Println(f(i), *val, *val1) //dereference the pointer to get its value at the current time
}
_, val, val1 = fibonacci()
fmt.Println(*val, *val1)
}
func fibonacci() (func(n int) int, *int, *int) {
var val int
var val1 int
f := func(n int) int {
if n == 0 || n == 1 {
val, val1 = 1, 1
} else {
val, val1 = val+val1, val
}
return val
}
fmt.Println("fibonacci val =", val, "val1 =", val1)
return f, &val, &val1 // return pointers to the closured values instead of just the values
}
Although you have accepted the above answer i'm giving another explanation. The reason why you receive the last value of the loop operation has to do with the Go's lexical scoping. The for loop introduces a new lexical block in which the value is referenced by it's memory address, so by pointer and not by it's value. In order to get the value, you have to de-reference.
Each time the for loop makes an iteration the value processed is pointing to the same memory address. All the function values created by this loop "capture" and share the same variable - and addressable storage location, not it's value at that particular moment. Thus when the last iteration is finished, the variable holds the value from the final step.
A much better approach for these kind of operations would be to use goroutines, because in these cases you are not communicating through sharing the same memory address, but you are sharing the memory through communication.
Here is a more elegant solution using goroutine:
package main
import (
"fmt"
)
func fibonacci(ch chan interface{}, quit chan struct{}) {
x, y := 1, 1
for {
select {
case ch <- x:
x, y = y, x+y
fmt.Println(x , y)
case <-quit:
fmt.Println("Quiting...")
return
}
}
}
func main() {
ch := make(chan interface{})
quit := make(chan struct{})
go func() {
for i := 0; i < 10; i++ {
<-ch
}
quit <- struct{}{}
}()
fibonacci(ch, quit)
}
https://play.golang.org/p/oPQgXWyV9u