How to map lottery permutations without repeat to an unique id? - algorithm

I store a tip of a lottery field of 49 fields with 6 numbers in a bit string like this:
"1011000001010000000000100000000000000000000000000" which represents the numbers 1 3 4 10 12 23.
I've been trying to find the mapping for hours. I know there is one, but I can't find it. It seems so simple.
Is there anyone here who can help me?
In case of 6 out of 49 there are 13.983.816 possibilities.
So:
1111110000000000000000000000000000000000000000000 = 1
1111101000000000000000000000000000000000000000000 = 2
.
.
.
0000000000000000000000000000000000000000000111111 = 13.983.816

To get your number from a list of input values, perform the following
value := 0
for i from 0..5:
value := value + 2 ** (49 - list[i])
-where ** denotes exponentiation.
Unpacking can be accomplished by either iterating over the bitstring collecting the indices of set bits, or from taking the floored log base 2 of the value and removing the leading '1' repeatedly:
for i from 0..5
list[i] := 49 - floor(log2(value))
value := value - 2 ** (49 - list[i])
However, you can do much better in terms of compression / packing. For an equally fast (probably faster) to unpack format, consider converting each number to a 6-bit bitstring, and then concatenating the results. This gives us 36 digits instead of the 49 required by your solution. Implementation:
value := 0
for i from 0..5
value := (value << 6) + list[i]
Unpacking is very efficient in this case, as you just mask off all but the last 6 bits with an & 0x3f and then a right bitshift >> 6 repeatedly.
for i from 5..0
list[i] := value & 0x3f
value := value >> 6
While more efficient, we can still do a bit better, at a slight cost of speed. If we instead represent these values as a single base-49 number, we avoid wasting any bits at all.
value := 0
for i from 0..5
value := value * 49 + list[i]
However unpacking is a bit more expensive
for i from 5..0
list[i] := value % 49
value := floor(value / 49)
This approach requires 34 bits, rather than the previous 36.

Here is an alternative approach based on the math.stackexchange links provided in the comments section. This method takes advantage of the fact that we are storing combinations, not permutations, so we can eliminate redundant representations of the same tuple. In fact, this approach brings the compression down to a mere 24 bits.
I wrote this algorithm out in Python rather than psuedo-code because I did not feel confident in giving you an algorithm this finicky without running it first. I also spent some time optimizing this solution (without sacrificing readability), so it will still handle large volumes of inputs fairly well if need be. However, if it does become a bottleneck you can always consider one of the simpler and cheaper alternatives in my original answer.
from functools import reduce
from math import factorial
def ncr(n, r):
if r > n: return 0
r = min(r, n-r)
result = reduce(int.__mul__, range(n, n-r, -1), 1)
return result // factorial(r)
def encode(numbers):
return sum(ncr(x, i) for i, x in enumerate(numbers, 1))
def decode(value, n=50, r=6, y=ncr(50,6)):
if not n: return (0,) if r else tuple()
if y <= value:
return decode(value - y, n - 1, r - 1, y * r // n) + (n,)
return decode(value, n - 1, r, y * (n - r) // n)
Do note however, that I use the range [0, 49), so you may need to offset everything by one if you plan to use 1-based indexing like your post shows.
To test it-
from itertools import combinations
def test_all():
numbers = list(range(0,49))
for comb in combinations(numbers, 6):
if comb != decode(encode(comb)):
print("error", comb, encode(comb), decode(encode(comb)))

Related

Generating random number in the range 0-N [duplicate]

I have seen this question asked a lot but never seen a true concrete answer to it. So I am going to post one here which will hopefully help people understand why exactly there is "modulo bias" when using a random number generator, like rand() in C++.
So rand() is a pseudo-random number generator which chooses a natural number between 0 and RAND_MAX, which is a constant defined in cstdlib (see this article for a general overview on rand()).
Now what happens if you want to generate a random number between say 0 and 2? For the sake of explanation, let's say RAND_MAX is 10 and I decide to generate a random number between 0 and 2 by calling rand()%3. However, rand()%3 does not produce the numbers between 0 and 2 with equal probability!
When rand() returns 0, 3, 6, or 9, rand()%3 == 0. Therefore, P(0) = 4/11
When rand() returns 1, 4, 7, or 10, rand()%3 == 1. Therefore, P(1) = 4/11
When rand() returns 2, 5, or 8, rand()%3 == 2. Therefore, P(2) = 3/11
This does not generate the numbers between 0 and 2 with equal probability. Of course for small ranges this might not be the biggest issue but for a larger range this could skew the distribution, biasing the smaller numbers.
So when does rand()%n return a range of numbers from 0 to n-1 with equal probability? When RAND_MAX%n == n - 1. In this case, along with our earlier assumption rand() does return a number between 0 and RAND_MAX with equal probability, the modulo classes of n would also be equally distributed.
So how do we solve this problem? A crude way is to keep generating random numbers until you get a number in your desired range:
int x;
do {
x = rand();
} while (x >= n);
but that's inefficient for low values of n, since you only have a n/RAND_MAX chance of getting a value in your range, and so you'll need to perform RAND_MAX/n calls to rand() on average.
A more efficient formula approach would be to take some large range with a length divisible by n, like RAND_MAX - RAND_MAX % n, keep generating random numbers until you get one that lies in the range, and then take the modulus:
int x;
do {
x = rand();
} while (x >= (RAND_MAX - RAND_MAX % n));
x %= n;
For small values of n, this will rarely require more than one call to rand().
Works cited and further reading:
CPlusPlus Reference
Eternally Confuzzled
Keep selecting a random is a good way to remove the bias.
Update
We could make the code fast if we search for an x in range divisible by n.
// Assumptions
// rand() in [0, RAND_MAX]
// n in (0, RAND_MAX]
int x;
// Keep searching for an x in a range divisible by n
do {
x = rand();
} while (x >= RAND_MAX - (RAND_MAX % n))
x %= n;
The above loop should be very fast, say 1 iteration on average.
#user1413793 is correct about the problem. I'm not going to discuss that further, except to make one point: yes, for small values of n and large values of RAND_MAX, the modulo bias can be very small. But using a bias-inducing pattern means that you must consider the bias every time you calculate a random number and choose different patterns for different cases. And if you make the wrong choice, the bugs it introduces are subtle and almost impossible to unit test. Compared to just using the proper tool (such as arc4random_uniform), that's extra work, not less work. Doing more work and getting a worse solution is terrible engineering, especially when doing it right every time is easy on most platforms.
Unfortunately, the implementations of the solution are all incorrect or less efficient than they should be. (Each solution has various comments explaining the problems, but none of the solutions have been fixed to address them.) This is likely to confuse the casual answer-seeker, so I'm providing a known-good implementation here.
Again, the best solution is just to use arc4random_uniform on platforms that provide it, or a similar ranged solution for your platform (such as Random.nextInt on Java). It will do the right thing at no code cost to you. This is almost always the correct call to make.
If you don't have arc4random_uniform, then you can use the power of opensource to see exactly how it is implemented on top of a wider-range RNG (ar4random in this case, but a similar approach could also work on top of other RNGs).
Here is the OpenBSD implementation:
/*
* Calculate a uniformly distributed random number less than upper_bound
* avoiding "modulo bias".
*
* Uniformity is achieved by generating new random numbers until the one
* returned is outside the range [0, 2**32 % upper_bound). This
* guarantees the selected random number will be inside
* [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
* after reduction modulo upper_bound.
*/
u_int32_t
arc4random_uniform(u_int32_t upper_bound)
{
u_int32_t r, min;
if (upper_bound < 2)
return 0;
/* 2**32 % x == (2**32 - x) % x */
min = -upper_bound % upper_bound;
/*
* This could theoretically loop forever but each retry has
* p > 0.5 (worst case, usually far better) of selecting a
* number inside the range we need, so it should rarely need
* to re-roll.
*/
for (;;) {
r = arc4random();
if (r >= min)
break;
}
return r % upper_bound;
}
It is worth noting the latest commit comment on this code for those who need to implement similar things:
Change arc4random_uniform() to calculate 2**32 % upper_bound as
-upper_bound % upper_bound. Simplifies the code and makes it the
same on both ILP32 and LP64 architectures, and also slightly faster on
LP64 architectures by using a 32-bit remainder instead of a 64-bit
remainder.
Pointed out by Jorden Verwer on tech#
ok deraadt; no objections from djm or otto
The Java implementation is also easily findable (see previous link):
public int nextInt(int n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
if ((n & -n) == n) // i.e., n is a power of 2
return (int)((n * (long)next(31)) >> 31);
int bits, val;
do {
bits = next(31);
val = bits % n;
} while (bits - val + (n-1) < 0);
return val;
}
Definition
Modulo Bias is the inherent bias in using modulo arithmetic to reduce an output set to a subset of the input set. In general, a bias exists whenever the mapping between the input and output set is not equally distributed, as in the case of using modulo arithmetic when the size of the output set is not a divisor of the size of the input set.
This bias is particularly hard to avoid in computing, where numbers are represented as strings of bits: 0s and 1s. Finding truly random sources of randomness is also extremely difficult, but is beyond the scope of this discussion. For the remainder of this answer, assume that there exists an unlimited source of truly random bits.
Problem Example
Let's consider simulating a die roll (0 to 5) using these random bits. There are 6 possibilities, so we need enough bits to represent the number 6, which is 3 bits. Unfortunately, 3 random bits yields 8 possible outcomes:
000 = 0, 001 = 1, 010 = 2, 011 = 3
100 = 4, 101 = 5, 110 = 6, 111 = 7
We can reduce the size of the outcome set to exactly 6 by taking the value modulo 6, however this presents the modulo bias problem: 110 yields a 0, and 111 yields a 1. This die is loaded.
Potential Solutions
Approach 0:
Rather than rely on random bits, in theory one could hire a small army to roll dice all day and record the results in a database, and then use each result only once. This is about as practical as it sounds, and more than likely would not yield truly random results anyway (pun intended).
Approach 1:
Instead of using the modulus, a naive but mathematically correct solution is to discard results that yield 110 and 111 and simply try again with 3 new bits. Unfortunately, this means that there is a 25% chance on each roll that a re-roll will be required, including each of the re-rolls themselves. This is clearly impractical for all but the most trivial of uses.
Approach 2:
Use more bits: instead of 3 bits, use 4. This yield 16 possible outcomes. Of course, re-rolling anytime the result is greater than 5 makes things worse (10/16 = 62.5%) so that alone won't help.
Notice that 2 * 6 = 12 < 16, so we can safely take any outcome less than 12 and reduce that modulo 6 to evenly distribute the outcomes. The other 4 outcomes must be discarded, and then re-rolled as in the previous approach.
Sounds good at first, but let's check the math:
4 discarded results / 16 possibilities = 25%
In this case, 1 extra bit didn't help at all!
That result is unfortunate, but let's try again with 5 bits:
32 % 6 = 2 discarded results; and
2 discarded results / 32 possibilities = 6.25%
A definite improvement, but not good enough in many practical cases. The good news is, adding more bits will never increase the chances of needing to discard and re-roll. This holds not just for dice, but in all cases.
As demonstrated however, adding an 1 extra bit may not change anything. In fact if we increase our roll to 6 bits, the probability remains 6.25%.
This begs 2 additional questions:
If we add enough bits, is there a guarantee that the probability of a discard will diminish?
How many bits are enough in the general case?
General Solution
Thankfully the answer to the first question is yes. The problem with 6 is that 2^x mod 6 flips between 2 and 4 which coincidentally are a multiple of 2 from each other, so that for an even x > 1,
[2^x mod 6] / 2^x == [2^(x+1) mod 6] / 2^(x+1)
Thus 6 is an exception rather than the rule. It is possible to find larger moduli that yield consecutive powers of 2 in the same way, but eventually this must wrap around, and the probability of a discard will be reduced.
Without offering further proof, in general using double the number
of bits required will provide a smaller, usually insignificant,
chance of a discard.
Proof of Concept
Here is an example program that uses OpenSSL's libcrypo to supply random bytes. When compiling, be sure to link to the library with -lcrypto which most everyone should have available.
#include <iostream>
#include <assert.h>
#include <limits>
#include <openssl/rand.h>
volatile uint32_t dummy;
uint64_t discardCount;
uint32_t uniformRandomUint32(uint32_t upperBound)
{
assert(RAND_status() == 1);
uint64_t discard = (std::numeric_limits<uint64_t>::max() - upperBound) % upperBound;
RAND_bytes((uint8_t*)(&randomPool), sizeof(randomPool));
while(randomPool > (std::numeric_limits<uint64_t>::max() - discard)) {
RAND_bytes((uint8_t*)(&randomPool), sizeof(randomPool));
++discardCount;
}
return randomPool % upperBound;
}
int main() {
discardCount = 0;
const uint32_t MODULUS = (1ul << 31)-1;
const uint32_t ROLLS = 10000000;
for(uint32_t i = 0; i < ROLLS; ++i) {
dummy = uniformRandomUint32(MODULUS);
}
std::cout << "Discard count = " << discardCount << std::endl;
}
I encourage playing with the MODULUS and ROLLS values to see how many re-rolls actually happen under most conditions. A sceptical person may also wish to save the computed values to file and verify the distribution appears normal.
Mark's Solution (The accepted solution) is Nearly Perfect.
int x;
do {
x = rand();
} while (x >= (RAND_MAX - RAND_MAX % n));
x %= n;
edited Mar 25 '16 at 23:16
Mark Amery 39k21170211
However, it has a caveat which discards 1 valid set of outcomes in any scenario where RAND_MAX (RM) is 1 less than a multiple of N (Where N = the Number of possible valid outcomes).
ie, When the 'count of values discarded' (D) is equal to N, then they are actually a valid set (V), not an invalid set (I).
What causes this is at some point Mark loses sight of the difference between N and Rand_Max.
N is a set who's valid members are comprised only of Positive Integers, as it contains a count of responses that would be valid. (eg: Set N = {1, 2, 3, ... n } )
Rand_max However is a set which ( as defined for our purposes ) includes any number of non-negative integers.
In it's most generic form, what is defined here as Rand Max is the Set of all valid outcomes, which could theoretically include negative numbers or non-numeric values.
Therefore Rand_Max is better defined as the set of "Possible Responses".
However N operates against the count of the values within the set of valid responses, so even as defined in our specific case, Rand_Max will be a value one less than the total number it contains.
Using Mark's Solution, Values are Discarded when: X => RM - RM % N
EG:
Ran Max Value (RM) = 255
Valid Outcome (N) = 4
When X => 252, Discarded values for X are: 252, 253, 254, 255
So, if Random Value Selected (X) = {252, 253, 254, 255}
Number of discarded Values (I) = RM % N + 1 == N
IE:
I = RM % N + 1
I = 255 % 4 + 1
I = 3 + 1
I = 4
X => ( RM - RM % N )
255 => (255 - 255 % 4)
255 => (255 - 3)
255 => (252)
Discard Returns $True
As you can see in the example above, when the value of X (the random number we get from the initial function) is 252, 253, 254, or 255 we would discard it even though these four values comprise a valid set of returned values.
IE: When the count of the values Discarded (I) = N (The number of valid outcomes) then a Valid set of return values will be discarded by the original function.
If we describe the difference between the values N and RM as D, ie:
D = (RM - N)
Then as the value of D becomes smaller, the Percentage of unneeded re-rolls due to this method increases at each natural multiplicative. (When RAND_MAX is NOT equal to a Prime Number this is of valid concern)
EG:
RM=255 , N=2 Then: D = 253, Lost percentage = 0.78125%
RM=255 , N=4 Then: D = 251, Lost percentage = 1.5625%
RM=255 , N=8 Then: D = 247, Lost percentage = 3.125%
RM=255 , N=16 Then: D = 239, Lost percentage = 6.25%
RM=255 , N=32 Then: D = 223, Lost percentage = 12.5%
RM=255 , N=64 Then: D = 191, Lost percentage = 25%
RM=255 , N= 128 Then D = 127, Lost percentage = 50%
Since the percentage of Rerolls needed increases the closer N comes to RM, this can be of valid concern at many different values depending on the constraints of the system running he code and the values being looked for.
To negate this we can make a simple amendment As shown here:
int x;
do {
x = rand();
} while (x > (RAND_MAX - ( ( ( RAND_MAX % n ) + 1 ) % n) );
x %= n;
This provides a more general version of the formula which accounts for the additional peculiarities of using modulus to define your max values.
Examples of using a small value for RAND_MAX which is a multiplicative of N.
Mark'original Version:
RAND_MAX = 3, n = 2, Values in RAND_MAX = 0,1,2,3, Valid Sets = 0,1 and 2,3.
When X >= (RAND_MAX - ( RAND_MAX % n ) )
When X >= 2 the value will be discarded, even though the set is valid.
Generalized Version 1:
RAND_MAX = 3, n = 2, Values in RAND_MAX = 0,1,2,3, Valid Sets = 0,1 and 2,3.
When X > (RAND_MAX - ( ( RAND_MAX % n ) + 1 ) % n )
When X > 3 the value would be discarded, but this is not a vlue in the set RAND_MAX so there will be no discard.
Additionally, in the case where N should be the number of values in RAND_MAX; in this case, you could set N = RAND_MAX +1, unless RAND_MAX = INT_MAX.
Loop-wise you could just use N = 1, and any value of X will be accepted, however, and put an IF statement in for your final multiplier. But perhaps you have code that may have a valid reason to return a 1 when the function is called with n = 1...
So it may be better to use 0, which would normally provide a Div 0 Error, when you wish to have n = RAND_MAX+1
Generalized Version 2:
int x;
if n != 0 {
do {
x = rand();
} while (x > (RAND_MAX - ( ( ( RAND_MAX % n ) + 1 ) % n) );
x %= n;
} else {
x = rand();
}
Both of these solutions resolve the issue with needlessly discarded valid results which will occur when RM+1 is a product of n.
The second version also covers the edge case scenario when you need n to equal the total possible set of values contained in RAND_MAX.
The modified approach in both is the same and allows for a more general solution to the need of providing valid random numbers and minimizing discarded values.
To reiterate:
The Basic General Solution which extends mark's example:
// Assumes:
// RAND_MAX is a globally defined constant, returned from the environment.
// int n; // User input, or externally defined, number of valid choices.
int x;
do {
x = rand();
} while (x > (RAND_MAX - ( ( ( RAND_MAX % n ) + 1 ) % n) ) );
x %= n;
The Extended General Solution which Allows one additional scenario of RAND_MAX+1 = n:
// Assumes:
// RAND_MAX is a globally defined constant, returned from the environment.
// int n; // User input, or externally defined, number of valid choices.
int x;
if n != 0 {
do {
x = rand();
} while (x > (RAND_MAX - ( ( ( RAND_MAX % n ) + 1 ) % n) ) );
x %= n;
} else {
x = rand();
}
In some languages ( particularly interpreted languages ) doing the calculations of the compare-operation outside of the while condition may lead to faster results as this is a one-time calculation no matter how many re-tries are required. YMMV!
// Assumes:
// RAND_MAX is a globally defined constant, returned from the environment.
// int n; // User input, or externally defined, number of valid choices.
int x; // Resulting random number
int y; // One-time calculation of the compare value for x
y = RAND_MAX - ( ( ( RAND_MAX % n ) + 1 ) % n)
if n != 0 {
do {
x = rand();
} while (x > y);
x %= n;
} else {
x = rand();
}
There are two usual complaints with the use of modulo.
one is valid for all generators. It is easier to see in a limit case. If your generator has a RAND_MAX which is 2 (that isn't compliant with the C standard) and you want only 0 or 1 as value, using modulo will generate 0 twice as often (when the generator generates 0 and 2) as it will generate 1 (when the generator generates 1). Note that this is true as soon as you don't drop values, whatever the mapping you are using from the generator values to the wanted one, one will occurs twice as often as the other.
some kind of generator have their less significant bits less random than the other, at least for some of their parameters, but sadly those parameter have other interesting characteristic (such has being able to have RAND_MAX one less than a power of 2). The problem is well known and for a long time library implementation probably avoid the problem (for instance the sample rand() implementation in the C standard use this kind of generator, but drop the 16 less significant bits), but some like to complain about that and you may have bad luck
Using something like
int alea(int n){
assert (0 < n && n <= RAND_MAX);
int partSize =
n == RAND_MAX ? 1 : 1 + (RAND_MAX-n)/(n+1);
int maxUsefull = partSize * n + (partSize-1);
int draw;
do {
draw = rand();
} while (draw > maxUsefull);
return draw/partSize;
}
to generate a random number between 0 and n will avoid both problems (and it avoids overflow with RAND_MAX == INT_MAX)
BTW, C++11 introduced standard ways to the the reduction and other generator than rand().
With a RAND_MAX value of 3 (in reality it should be much higher than that but the bias would still exist) it makes sense from these calculations that there is a bias:
1 % 2 = 1
2 % 2 = 0
3 % 2 = 1
random_between(1, 3) % 2 = more likely a 1
In this case, the % 2 is what you shouldn't do when you want a random number between 0 and 1. You could get a random number between 0 and 2 by doing % 3 though, because in this case: RAND_MAX is a multiple of 3.
Another method
There is much simpler but to add to other answers, here is my solution to get a random number between 0 and n - 1, so n different possibilities, without bias.
the number of bits (not bytes) needed to encode the number of possibilities is the number of bits of random data you'll need
encode the number from random bits
if this number is >= n, restart (no modulo).
Really random data is not easy to obtain, so why use more bits than needed.
Below is an example in Smalltalk, using a cache of bits from a pseudo-random number generator. I'm no security expert so use at your own risk.
next: n
| bitSize r from to |
n < 0 ifTrue: [^0 - (self next: 0 - n)].
n = 0 ifTrue: [^nil].
n = 1 ifTrue: [^0].
cache isNil ifTrue: [cache := OrderedCollection new].
cache size < (self randmax highBit) ifTrue: [
Security.DSSRandom default next asByteArray do: [ :byte |
(1 to: 8) do: [ :i | cache add: (byte bitAt: i)]
]
].
r := 0.
bitSize := n highBit.
to := cache size.
from := to - bitSize + 1.
(from to: to) do: [ :i |
r := r bitAt: i - from + 1 put: (cache at: i)
].
cache removeFrom: from to: to.
r >= n ifTrue: [^self next: n].
^r
Modulo reduction is a commonly seen way to make a random integer generator avoid the worst case of running forever.
When the range of possible integers is unknown, however, there is no way in general to "fix" this worst case of running forever without introducing bias. It's not just modulo reduction (rand() % n, discussed in the accepted answer) that will introduce bias this way, but also the "multiply-and-shift" reduction of Daniel Lemire, or if you stop rejecting an outcome after a set number of iterations. (To be clear, this doesn't mean there is no way to fix the bias issues present in pseudorandom generators. For example, even though modulo and other reductions are biased in general, they will have no issues with bias if the range of possible integers is a power of 2 and if the random generator produces unbiased random bits or blocks of them.)
The following answer of mine discusses the relationship between running time and bias in random generators, assuming we have a "true" random generator that can produce unbiased and independent random bits. The answer doesn't even involve the rand() function in C because it has many issues. Perhaps the most serious here is the fact that the C standard does not explicitly specify a particular distribution for the numbers returned by rand(), not even a uniform distribution.
How to generate a random integer in the range [0,n] from a stream of random bits without wasting bits?
As the accepted answer indicates, "modulo bias" has its roots in the low value of RAND_MAX. He uses an extremely small value of RAND_MAX (10) to show that if RAND_MAX were 10, then you tried to generate a number between 0 and 2 using %, the following outcomes would result:
rand() % 3 // if RAND_MAX were only 10, gives
output of rand() | rand()%3
0 | 0
1 | 1
2 | 2
3 | 0
4 | 1
5 | 2
6 | 0
7 | 1
8 | 2
9 | 0
So there are 4 outputs of 0's (4/10 chance) and only 3 outputs of 1 and 2 (3/10 chances each).
So it's biased. The lower numbers have a better chance of coming out.
But that only shows up so obviously when RAND_MAX is small. Or more specifically, when the number your are modding by is large compared to RAND_MAX.
A much better solution than looping (which is insanely inefficient and shouldn't even be suggested) is to use a PRNG with a much larger output range. The Mersenne Twister algorithm has a maximum output of 4,294,967,295. As such doing MersenneTwister::genrand_int32() % 10 for all intents and purposes, will be equally distributed and the modulo bias effect will all but disappear.
I just wrote a code for Von Neumann's Unbiased Coin Flip Method, that should theoretically eliminate any bias in the random number generation process. More info can be found at (http://en.wikipedia.org/wiki/Fair_coin)
int unbiased_random_bit() {
int x1, x2, prev;
prev = 2;
x1 = rand() % 2;
x2 = rand() % 2;
for (;; x1 = rand() % 2, x2 = rand() % 2)
{
if (x1 ^ x2) // 01 -> 1, or 10 -> 0.
{
return x2;
}
else if (x1 & x2)
{
if (!prev) // 0011
return 1;
else
prev = 1; // 1111 -> continue, bias unresolved
}
else
{
if (prev == 1)// 1100
return 0;
else // 0000 -> continue, bias unresolved
prev = 0;
}
}
}

Most efficient way to evaluate a binary scalar product mod 2

I am currently performing Fourier transforms for some physics problem, and a huge bottleneck of my algorithm comes from the evaluation of a scalar product modulo 2.
For a given integer N, I have to represent all the numbers in binary up to 2^N-1.
For each of these numbers, represented as a binary vector (e.g. 15 = 2^3 + 2^2 +2+2^0 = (1,1,1,1,0,...,0)) I have to evaluate its scalar products with all numbers from 0 to 2^N-1 in binary form modulo 2.
(for example, the scalar product 1.15 =(1,0,0,...,0).(1,1,1,1,0,...,0)=1*1+1*0+...=1 mod 2)
Note that the components are kept in binary form during the reducing modulo 2
(1,1).(1,1)=1*1+1*1 and not 1*1+2*2
This is basically 2^(2N) scalar products that I have to perform and reduce modulo 2.
I am having difficulty to get more than N = 18.
I was wondering whether some clever mathematical trick can be used to greatly reduce the time spent doing them.
I was thinking of some kind of recursion (i.e. saving results for N in a file and deduce the results for N+1) but I am not sure this would help. Indeed, with this recursion, knowing the results for N, I could cut the vector for N+1 corresponding to the N part plus an additional digit, but then at each scalar product, instead of evaluating the scalar product, I would have to tell my computer to go and read a big file (because I probably wouldn't be able to keep it all in dynamic memory), which is probably time-consuming, perhaps more than the ~20 multiplications I have to perform for each of the products.
Is there any known optimized number-theoretical algorithm allowing the evaluation of such a scalar product modulo 2 very quickly ? Are there any rules or ideas I am not aware of that I could exploit ?
Sorry for the terrible formatting, I just can't get LateX to work in here.
The sum of the product of corresponding bits, modulo 2, will be equal to the number of 1 bits in the AND of the two numbers, modulo 2.
As you can get the binary representation of a number easily, it might not be necessary to actually create an array of bits for them, but just use the integer data type in your programming language, which allows for at least 32 bits. Many languages offer bit operators, such as a AND (&) and XOR (^).
Counting the 1 bits in a number can be done with the variable-precision SWAR algorithm.
Here is program in Python that calculates this product modulo 2 for 2 numbers:
def numberOfSetBits(i):
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
def product(a, b):
return numberOfSetBits(a & b) % 2
Instead of counting the bits with numberOfSetBits, you could fold the bits together with XORs, first the 16 most significant bits with the 16 least significant bits, then of that result the 8 most significant with the 8 least significant bits, until you have one bit left. Again in Python:
def bitParity(i):
i = (i >> 16) ^ i
i = (i >> 8) ^ i
i = (i >> 4) ^ i
i = (i >> 2) ^ i
i = (i >> 1) ^ i
return i % 2
def product(a, b):
return bitParity(a & b)
If you change the order that you are evaluating these pairs (a matrix of size 2n x 2n), then you can efficiently figure out which products-mod-2 change in each row of your evaluation.
Using Gray code, you can iterate over each value from 0 ... 2n-1 in a special order where only 1 bit of the outer-loop value changes each time. You can store 1 bit for each value from 0 ... 2n-1 representing the previous row's product-mod-2 values, and then change it based on whether the changing bit has any effect, which it only does when the corresponding bit in the other (inner loop) number is 1 (if it's 0 then the binary AND will be 0 no matter what the value of the other bit).
In C:
int N = 5;
int max = (1 << N) - 1;
unsigned char* prev = calloc((1 << N) / 8, 1);
// for the first row all the products will be zero, so start at row 1
for(int a = 1; a <= max; a++)
{
int grey = a ^ (a >> 1); // compute the grey code
int prev_grey = (a - 1) ^ ((a - 1) >> 1);
int changed_bit = grey ^ prev_grey;
for(int b = 0; b <= max; b++)
{
// the product will be changed only if b has a 1 at the same place
// (otherwise it will be 0 regardless)
if(b & changed_bit)
{
prev[b >> 3] ^= (1 << (b & 7));
}
int mod = (prev[b >> 3] & (1 << (b & 7))) != 0;
printf("mod value of %d and %d is %d\n", grey, b, mod);
}
}
The inner loop can be optimized even more because you can easily figure out which values of b have a non-zero value in the position of the changed bit: for example if it's in position 10 then there will be runs of 1024 in a row of 0 then 1 etc. So you know that you have 1024 values where the product-mod-2 is the same as in the previous row etc. It's not clear to me if this helps you though because I don't know what you are doing with these products.
The inner loop could also be unrolled (e.g. 32 or 64 times) so that you don't read and write to the prev array each time, but rather process blocks of 32 or 64 bits at a time.

Number of Paths in a Triangle

I recently encountered a much more difficult variation of this problem, but realized I couldn't generate a solution for this very simple case. I searched Stack Overflow but couldn't find a resource that previously answered this.
You are given a triangle ABC, and you must compute the number of paths of certain length that start at and end at 'A'. Say our function f(3) is called, it must return the number of paths of length 3 that start and end at A: 2 (ABA,ACA).
I'm having trouble formulating an elegant solution. Right now, I've written a solution that generates all possible paths, but for larger lengths, the program is just too slow. I know there must be a nice dynamic programming solution that reuses sequences that we've previously computed but I can't quite figure it out. All help greatly appreciated.
My dumb code:
def paths(n,sequence):
t = ['A','B','C']
if len(sequence) < n:
for node in set(t) - set(sequence[-1]):
paths(n,sequence+node)
else:
if sequence[0] == 'A' and sequence[-1] == 'A':
print sequence
Let PA(n) be the number of paths from A back to A in exactly n steps.
Let P!A(n) be the number of paths from B (or C) to A in exactly n steps.
Then:
PA(1) = 1
PA(n) = 2 * P!A(n - 1)
P!A(1) = 0
P!A(2) = 1
P!A(n) = P!A(n - 1) + PA(n - 1)
= P!A(n - 1) + 2 * P!A(n - 2) (for n > 2) (substituting for PA(n-1))
We can solve the difference equations for P!A analytically, as we do for Fibonacci, by noting that (-1)^n and 2^n are both solutions of the difference equation, and then finding coefficients a, b such that P!A(n) = a*2^n + b*(-1)^n.
We end up with the equation P!A(n) = 2^n/6 + (-1)^n/3, and PA(n) being 2^(n-1)/3 - 2(-1)^n/3.
This gives us code:
def PA(n):
return (pow(2, n-1) + 2*pow(-1, n-1)) / 3
for n in xrange(1, 30):
print n, PA(n)
Which gives output:
1 1
2 0
3 2
4 2
5 6
6 10
7 22
8 42
9 86
10 170
11 342
12 682
13 1366
14 2730
15 5462
16 10922
17 21846
18 43690
19 87382
20 174762
21 349526
22 699050
23 1398102
24 2796202
25 5592406
26 11184810
27 22369622
28 44739242
29 89478486
The trick is not to try to generate all possible sequences. The number of them increases exponentially so the memory required would be too great.
Instead, let f(n) be the number of sequences of length n beginning and ending A, and let g(n) be the number of sequences of length n beginning with A but ending with B. To get things started, clearly f(1) = 1 and g(1) = 0. For n > 1 we have f(n) = 2g(n - 1), because the penultimate letter will be B or C and there are equal numbers of each. We also have g(n) = f(n - 1) + g(n - 1) because if a sequence ends begins A and ends B the penultimate letter is either A or C.
These rules allows you to compute the numbers really quickly using memoization.
My method is like this:
Define DP(l, end) = # of paths end at end and having length l
Then DP(l,'A') = DP(l-1, 'B') + DP(l-1,'C'), similar for DP(l,'B') and DP(l,'C')
Then for base case i.e. l = 1 I check if the end is not 'A', then I return 0, otherwise return 1, so that all bigger states only counts those starts at 'A'
Answer is simply calling DP(n, 'A') where n is the length
Below is a sample code in C++, you can call it with 3 which gives you 2 as answer; call it with 5 which gives you 6 as answer:
ABCBA, ACBCA, ABABA, ACACA, ABACA, ACABA
#include <bits/stdc++.h>
using namespace std;
int dp[500][500], n;
int DP(int l, int end){
if(l<=0) return 0;
if(l==1){
if(end != 'A') return 0;
return 1;
}
if(dp[l][end] != -1) return dp[l][end];
if(end == 'A') return dp[l][end] = DP(l-1, 'B') + DP(l-1, 'C');
else if(end == 'B') return dp[l][end] = DP(l-1, 'A') + DP(l-1, 'C');
else return dp[l][end] = DP(l-1, 'A') + DP(l-1, 'B');
}
int main() {
memset(dp,-1,sizeof(dp));
scanf("%d", &n);
printf("%d\n", DP(n, 'A'));
return 0;
}
EDITED
To answer OP's comment below:
Firstly, DP(dynamic programming) is always about state.
Remember here our state is DP(l,end), represents the # of paths having length l and ends at end. So to implement states using programming, we usually use array, so DP[500][500] is nothing special but the space to store the states DP(l,end) for all possible l and end (That's why I said if you need a bigger length, change the size of array)
But then you may ask, I understand the first dimension which is for l, 500 means l can be as large as 500, but how about the second dimension? I only need 'A', 'B', 'C', why using 500 then?
Here is another trick (of C/C++), the char type indeed can be used as an int type by default, which value is equal to its ASCII number. And I do not remember the ASCII table of course, but I know that around 300 will be enough to represent all the ASCII characters, including A(65), B(66), C(67)
So I just declare any size large enough to represent 'A','B','C' in the second dimension (that means actually 100 is more than enough, but I just do not think that much and declare 500 as they are almost the same, in terms of order)
so you asked what DP[3][1] means, it means nothing as the I do not need / calculate the second dimension when it is 1. (Or one can think that the state dp(3,1) does not have any physical meaning in our problem)
In fact, I always using 65, 66, 67.
so DP[3][65] means the # of paths of length 3 and ends at char(65) = 'A'
You can do better than the dynamic programming/recursion solution others have posted, for the given triangle and more general graphs. Whenever you are trying to compute the number of walks in a (possibly directed) graph, you can express this in terms of the entries of powers of a transfer matrix. Let M be a matrix whose entry m[i][j] is the number of paths of length 1 from vertex i to vertex j. For a triangle, the transfer matrix is
0 1 1
1 0 1.
1 1 0
Then M^n is a matrix whose i,j entry is the number of paths of length n from vertex i to vertex j. If A corresponds to vertex 1, you want the 1,1 entry of M^n.
Dynamic programming and recursion for the counts of paths of length n in terms of the paths of length n-1 are equivalent to computing M^n with n multiplications, M * M * M * ... * M, which can be fast enough. However, if you want to compute M^100, instead of doing 100 multiplies, you can use repeated squaring: Compute M, M^2, M^4, M^8, M^16, M^32, M^64, and then M^64 * M^32 * M^4. For larger exponents, the number of multiplies is about c log_2(exponent).
Instead of using that a path of length n is made up of a path of length n-1 and then a step of length 1, this uses that a path of length n is made up of a path of length k and then a path of length n-k.
We can solve this with a for loop, although Anonymous described a closed form for it.
function f(n){
var as = 0, abcs = 1;
for (n=n-3; n>0; n--){
as = abcs - as;
abcs *= 2;
}
return 2*(abcs - as);
}
Here's why:
Look at one strand of the decision tree (the other one is symmetrical):
A
B C...
A C
B C A B
A C A B B C A C
B C A B B C A C A C A B B C A B
Num A's Num ABC's (starting with first B on the left)
0 1
1 (1-0) 2
1 (2-1) 4
3 (4-1) 8
5 (8-3) 16
11 (16-5) 32
Cleary, we can't use the strands that end with the A's...
You can write a recursive brute force solution and then memoize it (aka top down dynamic programming). Recursive solutions are more intuitive and easy to come up with. Here is my version:
# search space (we have triangle with nodes)
nodes = ["A", "B", "C"]
#cache # memoize!
def recurse(length, steps):
# if length of the path is n and the last node is "A", then it's
# a valid path and we can count it.
if length == n and ((steps-1)%3 == 0 or (steps+1)%3 == 0):
return 1
# we don't want paths having len > n.
if length > n:
return 0
# from each position, we have two possibilities, either go to next
# node or previous node. Total paths will be sum of both the
# possibilities. We do this recursively.
return recurse(length+1, steps+1) + recurse(length+1, steps-1)

Better Algorithm to find the maximum number who's square divides K :

Given a number K which is a product of two different numbers (A,B), find the maximum number(<=A & <=B) who's square divides the K .
Eg : K = 54 (6*9) . Both the numbers are available i.e 6 and 9.
My approach is fairly very simple or trivial.
taking the smallest of the two ( 6 in this case).Lets say A
Square the number and divide K, if its a perfect division, that's the number.
Else A = A-1 ,till A =1.
For the given example, 3*3 = 9 divides K, and hence 3 is the answer.
Looking for a better algorithm, than the trivial solution.
Note : The test cases are in 1000's so the best possible approach is needed.
I am sure someone else will come up with a nice answer involving modulus arithmetic. Here is a naive approach...
Each of the factors can themselves be factored (though it might be an expensive operation).
Given the factors, you can then look for groups of repeated factors.
For instance, using your example:
Prime factors of 9: 3, 3
Prime factors of 6: 2, 3
All prime factors: 2, 3, 3, 3
There are two 3s, so you have your answer (the square of 3 divides 54).
Second example of 36 x 9 = 324
Prime factors of 36: 2, 2, 3, 3
Prime factors of 9: 3, 3
All prime factors: 2, 2, 3, 3, 3, 3
So you have two 2s and four 3s, which means 2x3x3 is repeated. 2x3x3 = 18, so the square of 18 divides 324.
Edit: python prototype
import math
def factors(num, dict):
""" This finds the factors of a number recursively.
It is not the most efficient algorithm, and I
have not tested it a lot. You should probably
use another one. dict is a dictionary which looks
like {factor: occurrences, factor: occurrences, ...}
It must contain at least {2: 0} but need not have
any other pre-populated elements. Factors will be added
to this dictionary as they are found.
"""
while (num % 2 == 0):
num /= 2
dict[2] += 1
i = 3
found = False
while (not found and (i <= int(math.sqrt(num)))):
if (num % i == 0):
found = True
factors(i, dict)
factors(num / i, dict)
else:
i += 2
if (not found):
if (num in dict.keys()):
dict[num] += 1
else:
dict[num] = 1
return 0
#MAIN ROUTINE IS HERE
n1 = 37 # first number (6 in your example)
n2 = 41 # second number (9 in your example)
dict = {2: 0} # initialise factors (start with "no factors of 2")
factors(n1, dict) # find the factors of f1 and add them to the list
factors(n2, dict) # find the factors of f2 and add them to the list
sqfac = 1
# now find all factors repeated twice and multiply them together
for k in dict.keys():
dict[k] /= 2
sqfac *= k ** dict[k]
# here is the result
print(sqfac)
Answer in C++
int func(int i, j)
{
int k = 54
float result = pow(i, 2)/k
if (static_cast<int>(result)) == result)
{
if(i < j)
{
func(j, i);
}
else
{
cout << "Number is correct: " << i << endl;
}
}
else
{
cout << "Number is wrong" << endl;
func(j, i)
}
}
Explanation:
First recursion then test if result is a positive integer if it is then check if the other multiple is less or greater if greater recursive function tries the other multiple and if not then it is correct. Then if result is not positive integer then print Number is wrong and do another recursive function to test j.
If I got the problem correctly, I see that you have a rectangle of length=A, width=B, and area=K
And you want convert it to a square and lose the minimum possible area
If this is the case. So the problem with your algorithm is not the cost of iterating through mutliple iterations till get the output.
Rather the problem is that your algorithm depends heavily on the length A and width B of the input rectangle.
While it should depend only on the area K
For example:
Assume A =1, B=25
Then K=25 (the rect area)
Your algorithm will take the minimum value, which is A and accept it as answer with a single
iteration which is so fast but leads to wrong asnwer as it will result in a square of area 1 and waste the remaining 24 (whatever cm
or m)
While the correct answer here should be 5. which will never be reached by your algorithm
So, in my solution I assume a single input K
My ideas is as follows
x = sqrt(K)
if(x is int) .. x is the answer
else loop from x-1 till 1, x--
if K/x^2 is int, x is the answer
This might take extra iterations but will guarantee accurate answer
Also, there might be some concerns on the cost of sqrt(K)
but it will be called just once to avoid misleading length and width input

Find next prime given all prior

I'm writing a recursive infinite prime number generator, and I'm almost sure I can optimize it better.
Right now, aside from a lookup table of the first dozen primes, each call to the recursive function receives a list of all previous primes.
Since it's a lazy generator, right now I'm just filtering out any number that is modulo 0 for any of the previous primes, and taking the first unfiltered result. (The check I'm using short-circuits, so the first time a previous prime divides the current number evenly it aborts with that information.)
Right now, my performance degrades around when searching for the 400th prime (37,813). I'm looking for ways to use the unique fact that I have a list of all prior primes, and am only searching for the next, to improve my filtering algorithm. (Most information I can find offers non-lazy sieves to find primes under a limit, or ways to find the pnth prime given pn-1, not optimizations to find pn given 2...pn-1 primes.)
For example, I know that the pnth prime must reside in the range (pn-1 + 1)...(pn-1+pn-2). Right now I start my filtering of integers at pn-1 + 2 (since pn-1 + 1 can only be prime for pn-1 = 2, which is precomputed). But since this is a lazy generator, knowing the terminal bounds of the range (pn-1+pn-2) doesn't help me filter anything.
What can I do to filter more effectively given all previous primes?
Code Sample
#doc """
Creates an infinite stream of prime numbers.
iex> Enum.take(primes, 5)
[2, 3, 5, 7, 11]
iex> Enum.take_while(primes, fn(n) -> n < 25 end)
[2, 3, 5, 7, 11, 13, 17, 19, 23]
"""
#spec primes :: Stream.t
def primes do
Stream.unfold( [], fn primes ->
next = next_prime(primes)
{ next, [next | primes] }
end )
end
defp next_prime([]), do: 2
defp next_prime([2 | _]), do: 3
defp next_prime([3 | _]), do: 5
defp next_prime([5 | _]), do: 7
# ... etc
defp next_prime(primes) do
start = Enum.first(primes) + 2
Enum.first(
Stream.drop_while(
Integer.stream(from: start, step: 2),
fn number ->
Enum.any?(primes, fn prime ->
rem(number, prime) == 0
end )
end
)
)
end
The primes function starts with an empty array, gets the next prime for it (2 initially), and then 1) emits it from the Stream and 2) Adds it to the top the primes stack used in the next call. (I'm sure this stack is the source of some slowdown.)
The next_primes function takes in that stack. Starting from the last known prime+2, it creates an infinite stream of integers, and drops each integer that divides evenly by any known prime for the list, and then returns the first occurrence.
This is, I suppose, something similar to a lazy incremental Eratosthenes's sieve.
You can see some basic attempts at optimization: I start checking at pn-1+2, and I step over even numbers.
I tried a more verbatim Eratosthenes's sieve by just passing the Integer.stream through each calculation, and after finding a prime, wrapping the Integer.stream in a new Stream.drop_while that filtered just multiples of that prime out. But since Streams are implemented as anonymous functions, that mutilated the call stack.
It's worth noting that I'm not assuming you need all prior primes to generate the next one. I just happen to have them around, thanks to my implementation.
For any number k you only need to try division with primes up to and including √k. This is because any prime larger than √k would need to be multiplied with a prime smaller than √k.
Proof:
√k * √k = k so (a+√k) * √k > k (for all 0<a<(k-√k)). From this follows that (a+√k) divides k iff there is another divisor smaller than √k.
This is commonly used to speed up finding primes tremendously.
You don't need all prior primes, just those below the square root of your current production point are enough, when generating composites from primes by the sieve of Eratosthenes algorithm.
This greatly reduces the memory requirements. The primes are then simply those odd numbers which are not among the composites.
Each prime p produces a chain of its multiples, starting from its square, enumerated with the step of 2p (because we work only with odd numbers). These multiples, each with its step value, are stored in a dictionary, thus forming a priority queue. Only the primes up to the square root of the current candidate are present in this priority queue (the same memory requirement as that of a segmented sieve of E.).
Symbolically, the sieve of Eratosthenes is
P = {3,5,7,9, ...} \ &bigcup; {{p2, p2+2p, p2+4p, p2+6p, ...} | p in P}
Each odd prime generates a stream of its multiples by repeated addition; all these streams merged together give us all the odd composites; and primes are all the odd numbers without the composites (and the one even prime number, 2).
In Python (can be read as an executable pseudocode, hopefully),
def postponed_sieve(): # postponed sieve, by Will Ness,
yield 2; yield 3; # https://stackoverflow.com/a/10733621/849891
yield 5; yield 7; # original code David Eppstein / Alex Martelli
D = {} # 2002, http://code.activestate.com/recipes/117119
ps = (p for p in postponed_sieve()) # a separate Primes Supply:
p = ps.next() and ps.next() # (3) a Prime to add to dict
q = p*p # (9) when its sQuare is
c = 9 # the next Candidate
while True:
if c not in D: # not a multiple of any prime seen so far:
if c < q: yield c # a prime, or
else: # (c==q): # the next prime's square:
add(D,c + 2*p,2*p) # (9+6,6 : 15,21,27,33,...)
p=ps.next() # (5)
q=p*p # (25)
else: # 'c' is a composite:
s = D.pop(c) # step of increment
add(D,c + s,s) # next multiple, same step
c += 2 # next odd candidate
def add(D,x,s): # make no multiple keys in Dict
while x in D: x += s # increment by the given step
D[x] = s
Once a prime is produced, it can be forgotten. A separate prime supply is taken from a separate invocation of the same generator, recursively, to maintain the dictionary. And the prime supply for that one is taken from another, recursively as well. Each needs to be supplied only up to the square root of its production point, so very few generators are needed overall (on the order of log log N generators), and their sizes are asymptotically insignificant (sqrt(N), sqrt( sqrt(N) ), etc).
I wrote a program that generates the prime numbers in order, without limit, and used it to sum the first billion primes at my blog. The algorithm uses a segmented Sieve of Eratosthenes; additional sieving primes are calculated at each segment, so the process can continue indefinitely, as long as you have space to store the sieving primes. Here's pseudocode:
function init(delta) # Sieve of Eratosthenes
m, ps, qs := 0, [], []
sieve := makeArray(2 * delta, True)
for p from 2 to delta
if sieve[p]
m := m + 1; ps.insert(p)
qs.insert(p + (p-1) / 2)
for i from p+p to n step p
sieve[i] := False
return m, ps, qs, sieve
function advance(m, ps, qs, sieve, bottom, delta)
for i from 0 to delta - 1
sieve[i] := True
for i from 0 to m - 1
qs[i] := (qs[i] - delta) % ps[i]
p := ps[0] + 2
while p * p <= bottom + 2 * delta
if isPrime(p) # trial division
m := m + 1; ps.insert(p)
qs.insert((p*p - bottom - 1) / 2)
p := p + 2
for i from 0 to m - 1
for j from qs[i] to delta step ps[i]
sieve[j] := False
return m, ps, qs, sieve
Here ps is the list of sieving primes less than the current maximum and qs is the offset of the smallest multiple of the corresponding ps in the current segment. The advance function clears the bitarray, resets qs, extends ps and qs with new sieving primes, then sieves the next segment.
function genPrimes()
bottom, i, delta := 0, 1, 50000
m, ps, qs, sieve := init(delta)
yield 2
while True
if i == delta # reset for next segment
i, bottom := -1, bottom + 2 * delta
m, ps, qs, sieve := \textbackslash
advance(m, ps, qs, sieve, bottom, delta)
else if sieve[i] # found prime
yield bottom + 2*i + 1
i := i + 1
The segment size 2 * delta is arbitrarily set to 100000. This method requires O(sqrt(n)) space for the sieving primes plus constant space for the sieve.
It is slower but saves space to generate candidates with a wheel and test the candidates for primality.
function genPrimes()
w, wheel := 0, [1,2,2,4,2,4,2,4,6,2,6,4,2,4, \
6,6,2,6,4,2,6,4,6,8,4,2,4,2,4,8,6,4,6, \
2,4,6,2,6,6,4,2,4,6,2,6,4,2,4,2,10,2,10]
p := 2; yield p
repeat
p := p + wheel[w]
if w == 51 then w := 4 else w := w + 1
if isPrime(p) yield p
It may be useful to begin with a sieve and switch to a wheel when the sieve grows too large. Even better is to continue sieving with some fixed set of sieving primes, once the set grows too large, then report only those values bottom + 2*i + 1 that pass a primality test.

Resources