I'm trying to use erl_lint() to build a simple Erlang syntax and style checker. I've gotten far enough to load the file and parse it into Forms and to get erl_lint to partially understand it, but then erl_lint complains about undefined functions that are defined. What am I doing wrong?
erlint.erl :
-module(erlint).
-export([lint/1]).
% based on http://stackoverflow.com/a/28086396/13675
lint(File) ->
{ok, B} = file:read_file(File),
Forms = scan(erl_scan:tokens([],binary_to_list(B),1),[]),
F = fun(X) -> {ok,Y} = erl_parse:parse_form(X), Y end,
erl_lint:module([F(X) || X <- Forms],File).
scan({done,{ok,T,N},S},Res) ->
scan(erl_scan:tokens([],S,N),[T|Res]);
scan(_,Res) ->
lists:reverse(Res).
hello.erl :
-module(hello).
-export([hello_world/0]).
hello_world() -> io:fwrite("hello, world\n").
attempt to use :
1> c(erlint).
{ok,erlint}
2> erlint:lint("hello.erl").
{error,[{"hello.erl",
[{2,erl_lint,{undefined_function,{hello_world,0}}}]}],
[]}
I'm not sure this approach fits with your overall plan, but you could instead compile the input file, extract its abstract forms from the resulting beam, and pass them to erl_lint:
-module(erlint).
-export([lint/1]).
lint(File) ->
{ok,_,Bin} = compile:file(File,[debug_info,binary]),
{ok,{_,[{abstract_code,{_,AC}}]}} = beam_lib:chunks(Bin,[abstract_code]),
erl_lint:module(AC,File).
Let's change your hello.erl to include an unused variable:
-module(hello).
-export([hello_world/0]).
hello_world() ->
X = io:fwrite("hello, world\n").
We see that this version of erlint:lint/1 correctly reports it:
1> erlint:lint("hello.erl").
{ok,[{"hello.erl",[{5,erl_lint,{unused_var,'X'}}]}]}
If you need them for your overall purposes, note that you can retrieve source code forms from the abstract forms variable AC by calling erl_syntax:form_list(AC).
I'm running into a problem with the MNP package which I've traced to an unfortunate call to deparse (whose maximum width is limited to 500 characters).
Background (easily skippable if you're bored)
Because mnp uses a somewhat idiosyncratic syntax to allow for varying choice sets (you include cbind(choiceA,choiceB,...) in the formula definition), the left hand side of my formula call is 1700 characters or so when model.matrix.default calls deparse on it. Since deparse supports a maximum width.cutoff of 500 characters, the sapply(attr(t, "variables"), deparse, width.cutoff = 500)[-1L] line in model.matrix.default has as its first element:
[1] "cbind(plan1, plan2, plan3, plan4, plan5, plan6, plan7, plan8, plan9, plan10, plan11, plan12, plan13, plan14, plan15, plan16, plan17, plan18, plan19, plan20, plan21, plan22, plan23, plan24, plan25, plan26, plan27, plan28, plan29, plan30, plan31, plan32, plan33, plan34, plan35, plan36, plan37, plan38, plan39, plan40, plan41, plan42, plan43, plan44, plan45, plan46, plan47, plan48, plan49, plan50, plan51, plan52, plan53, plan54, plan55, plan56, plan57, plan58, plan59, plan60, plan61, plan62, plan63, "
[2] " plan64, plan65, plan66, plan67, plan68, plan69, plan70, plan71, plan72, plan73, plan74, plan75, plan76, plan77, plan78, plan79, plan80, plan81, plan82, plan83, plan84, plan85, plan86, plan87, plan88, plan89, plan90, plan91, plan92, plan93, plan94, plan95, plan96, plan97, plan98, plan99, plan100, plan101, plan102, plan103, plan104, plan105, plan106, plan107, plan108, plan109, plan110, plan111, plan112, plan113, plan114, plan115, plan116, plan117, plan118, plan119, plan120, plan121, plan122, plan123, "
[3] " plan124, plan125, plan126, plan127, plan128, plan129, plan130, plan131, plan132, plan133, plan134, plan135, plan136, plan137, plan138, plan139, plan140, plan141, plan142, plan143, plan144, plan145, plan146, plan147, plan148, plan149, plan150, plan151, plan152, plan153, plan154, plan155, plan156, plan157, plan158, plan159, plan160, plan161, plan162, plan163, plan164, plan165, plan166, plan167, plan168, plan169, plan170, plan171, plan172, plan173, plan174, plan175, plan176, plan177, plan178, plan179, "
[4] " plan180, plan181, plan182, plan183, plan184, plan185, plan186, plan187, plan188, plan189, plan190, plan191, plan192, plan193, plan194, plan195, plan196, plan197, plan198, plan199, plan200, plan201, plan202, plan203, plan204, plan205, plan206, plan207, plan208, plan209, plan210, plan211, plan212, plan213, plan214, plan215, plan216, plan217, plan218, plan219, plan220, plan221, plan222, plan223, plan224, plan225, plan226, plan227, plan228, plan229, plan230, plan231, plan232, plan233, plan234, plan235, "
[5] " plan236, plan237, plan238, plan239, plan240, plan241, plan242, plan243, plan244, plan245, plan246, plan247, plan248, plan249, plan250, plan251, plan252, plan253, plan254, plan255, plan256, plan257, plan258, plan259, plan260, plan261, plan262, plan263, plan264, plan265, plan266, plan267, plan268, plan269, plan270, plan271, plan272, plan273, plan274, plan275, plan276, plan277, plan278, plan279, plan280, plan281, plan282, plan283, plan284, plan285, plan286, plan287, plan288, plan289, plan290, plan291, "
[6] " plan292, plan293, plan294, plan295, plan296, plan297, plan298, plan299, plan300, plan301, plan302, plan303, plan304, plan305, plan306, plan307, plan308, plan309, plan310, plan311, plan312, plan313)"
When model.matrix.default tests this against the variables in the data.frame, it returns an error.
The problem
To get around this, I've written a new deparse function:
deparse <- function (expr, width.cutoff = 60L, backtick = mode(expr) %in%
c("call", "expression", "(", "function"), control = c("keepInteger",
"showAttributes", "keepNA"), nlines = -1L) {
ret <- .Internal(deparse(expr, width.cutoff, backtick, .deparseOpts(control), nlines))
paste0(ret,collapse="")
}
However, when I run mnp again and step through, it returns the same error for the same reason (base::deparse is being run, not my deparse).
This is somewhat surprising to me, as what I expect is more typified by this example, where the user-defined function temporarily over-writes the base function:
> print <- function() {
+ cat("user-defined print ran\n")
+ }
> print()
user-defined print ran
I realize the right way to solve this problem is to rewrite model.matrix.default, but as a tool for debugging I'm curious how to force it to use my deparse and why the anticipated (by me) behavior is not happening here.
The functions fixInNamespace and assignInNamespace are provided to allow editing of existing functions. You could try ... but I will not since mucking with deparse looks too dangerous:
assignInNamespace("deparse",
function (expr, width.cutoff = 60L, backtick = mode(expr) %in%
c("call", "expression", "(", "function"), control = c("keepInteger",
"showAttributes", "keepNA"), nlines = -1L) {
ret <- .Internal(deparse(expr, width.cutoff, backtick, .deparseOpts(control), nlines))
paste0(ret,collapse="")
} , "base")
There is an indication on the help page that the use of such functions has restrictions and I would not be surprised that such core function might have additional layers of protection. Since it works via side-effect, you should not need to assign the result.
This is how packages with namespaces search for functions, as described in Section 1.6, Package Namespaces of Writing R Extensions
Namespaces are sealed once they are loaded. Sealing means that imports
and exports cannot be changed and that internal variable bindings
cannot be changed. Sealing allows a simpler implementation strategy
for the namespace mechanism. Sealing also allows code analysis and
compilation tools to accurately identify the definition corresponding
to a global variable reference in a function body.
The namespace controls the search strategy for variables used by
functions in the package. If not found locally, R searches the package
namespace first, then the imports, then the base namespace and then
the normal search path.