Could intersystems cache global nodes be ordered by the second node? - caching

I want to sort the string(or number) by the second global nodes(the $o is ordered by the first node then second node ...but i don't care about the first node, i just want the data sorted by the second node, just ignore the first node). as if i want to sort the global ^G("3","2") ^G("1","3") ^G("2","1") . the global would be ordered by the second node, from small to large ,like ^G("2","1") ^G("3","2") ^G("1","3"), so is there any existing function to achieve this ?

no. Usually you would get that result by creating an index on the second node and then order by that.

Related

algorithm - find the position of item in the queue

I have an array of arbitrary objects
Each object has a unique id
New objects are added at the end of the queue (tail)
Objects are removed from the top for the processing (FIFO)
Objects pending processing can be deleted if requires.
Problem is to find the Object current position in the queue from the tail given the id.
What is the quickest way to do it? Just to be clear, I do not want Object from the id so just the hash map is not the solution. What I really need is the position.
We thought of two ways:
Brute-force, find in a loop
add a new field in Object which stores a global index that is incremented for every object added to the queue. We can then quickly get the position by checking the global index stored in the last item and this item. However, the only complexity is that if one of the objects is deleted, the global index of all the items below needs to be updated.
Any better ideas? Please suggest.
The easiest way to do it is to represent the FIFO as a doubly-linked list. This list can either be of Objects (meaning that if you had an ID you would also need a mapping, either a hash map or some other approach, from ID to object), or of standalone FIFO nodes (in which case you'd have a mapping from ID to node address).
I believe I have an log(n) time solution. Construct a hash table that maps each ID to its node in our other data structure- a self-balancing binary search tree (red-black, AVL, whatever you like). In this tree, a node should be ordered by its relative priority / order in your queue. It should also store a pointer to its parent in the tree, and the size of the subtree rooted at itself. From this we can query for the number of elements with a lower priority / order in logarithmic time.

How to find nodes fast in an unordered tree

I have an unordered tree in the form of, for example:
Root
A1
A1_1
A1_1_1
A1_1_2
A1_1_2_1
A1_1_2_2
A1_1_2_3
A1_1_3
A1_1_n
A1_2
A1_3
A1_n
A2
A2_1
A2_2
A2_3
A2_n
The tree is unordered
each child can have a random N count of children
each node stores an unique long value.
the value required can be at any position.
My problem: if I need the long value of A1_1_2_3, first time I will traverse the nodes I do depth first search to get it, however: on later calls to the same node I must get its value without a recursive search. Why? If this tree would have hundreds of thousands of nodes until it reaches my A1_1_2_3 node, it would take too much time.
What I thought of, is to leave some pointers after the first traverse. E.g. for my case, when I give back the long value for A1_1_2_3 I also give back an array with information for future searches of the same node and say: to get to A1_1_2_3, I need:
first child of Root, which is A1
first child of A1, which is A1_1
second child of A1_1, which is A1_1_2
third child of A1_1_2, which is what I need: A1_1_2_3
So I figured I would store this information along with the value for A1_1_2_3 as an array of indexes: [0, 0, 1, 2]. By doing so, I could easily recreate the node on subsequent calls to the A1_1_2_3 and avoid recursion each time.
However the nodes can change. On subsequent calls, I might have a new structure, so my indexes stored earlier would not match anymore. But if this happens, I thought whnever I dont find the element anymore, I would recursively go back up a level and search for the item, and so on until I find it again and store the indexes again for future references:
e.g. if my A1_1_2_3 is now situated in this new structure:
A1_1
A1_1_0
A1_1_1
A1_1_2
A1_1_2_1
A1_1_2_2
A1_1_21_22
A1_1_2_3
... in this case the new element A1_1_0 ruined my stored structure, so I would go back up a level and search children again recursively until I find it again.
Does this even make sense, what I thought of here, or am I overcomplicating things? Im talking about an unordered tree which can have max about three hundreds of thousands of nodes, and it is vital that I can jump to nodes as fast as possible. But the tree can also be very small, under 10 nodes.
Is there a more efficient way to search in such a situation?
Thank you for any idea.
edit:
I forgot to add: what I need on subsequent calls is not just the same value, but also its position is important, because I must get the next page of children after that child (since its a tree structure, Im calling paging on nodes after the initially selected one). Hope it makes more sense now.

Linked Lists and Sentinal node

So i have been asked in my homework to merge-sort 2 different sorted circular linked lists without useing a sentinal node allso the lists can be empty, my questsion is what is a sentinal node in the first place?
a sentinal node is a node that contains no real data - it's just there for the convenience of the implementation.
Thus a list with 4 real elements might have one or more extra nodes, making a total of 5 or 6 nodes.
Those extra nodes might be place holders (e.g. marking where you started the merge), pseudo-nodes indicating the head of the list, or anything else the algorithm designer can think up.
A sentinel node is a node that you add to your code to avoid handling degeneracies with special code. For merge sort for example, you can add a node with value = INFINITY to the end of both lists that you want to merge, this guarantees that once you hit the end of a list you can't go beyond that because the value is always greater (or equal) to the values in the other list.
So if you are not using a sentinel, you have to write code to handle this. In your merge routine, you should check that you've reached the end..
Sentinel node is a traversal path terminator in linked lists and tree. It doesn't hold or reference any data managed by the data structure. One of the benefit is to Reduce algorithmic complexity and code size.In your case the complexity,code size will be increased and speed of operation will be decreased.

A red black tree with the same key multiple times: store collections in the nodes or store them as multiple nodes?

Apparently you could do either, but the former is more common.
Why would you choose the latter and how does it work?
I read this: http://www.drdobbs.com/cpp/stls-red-black-trees/184410531; which made me think that they did it. It says:
insert_always is a status variable that tells rb_tree whether multiple instances of the same key value are allowed. This variable is set by the constructor and is used by the STL to distinguish between set and multiset and between map and multimap. set and map can only have one occurrence of a particular key, whereas multiset and multimap can have multiple occurrences.
Although now i think it doesnt necessarily mean that. They might still be using containers.
I'm thinking all the nodes with the same key would have to be in a row, because you either have to store all nodes with the same key on the right side or the left side. So if you store equal nodes to the right and insert 1000 1s and one 2, you'd basically have a linked list, which would ruin the properties of the red black tree.
Is the reason why i can't find much on it that it's just a bad idea?
down side of store as multiple nodes:
expands tree size, which make search slower.
if you want to retrieve all values for key K, you need M*log(N) time, where N is number of total nodes, M is number of values for key K, unless you introduce extra code (which complicates the data structure) to implement linked list for these values. (if storing collection, time complexity only take log(N), and it's simple to implement)
more costly to delete. with multi-node method, you'll need to remove node on every delete, but with collection-storage, you only need to remove node K when the last value of key K is deleted.
Can't think of any good side of multi-node method.
Binary Search trees by definition cannot contain duplicates. If you use them to produce a sorted list throwing out the duplicates would produce an incorrect result.
I am working on an implementation of Red Black trees in PHP when I ran into the duplicate issue. We are going to use the tree for sorting and searching.
I am considering adding an occurrence value to the node data type. When a duplicate is encountered just increment occurrence. When walking the tree to produce output just repeat the value by the number of occurrences. I think I would still have a valid BST and avoid having a whole chain of duplicate values which preserve the optimal search time.

return inserted items for a given interval

How would one design a memory efficient system which accepts Items added into it and allows Items to be retrieved given a time interval (i.e. return Items inserted between time T1 and time T2). There is no DB involved. Items stored in-memory. What is the data structure involved and associated algorithm.
Updated:
Assume extremely high insertion rate compared to data query.
You can use a sorted data structure, where key is by time of arrival. Note the following:
items are not remvoed
items are inserted in order [if item i was inserted after item j then key(i)>key(j)].
For this reason, tree is discouraged, since it is "overpower", and insertion in it is O(logn), where you can get an O(1) insertion. I suggest using one of the followings:
(1)Array: the array will be filled up always at its end. When the allocated array is full, reallocate a bigger [double sized] array, and copy existing array to it.
Advantages: good caching is usually expected in arrays, O(1) armotorized insertion, used space is at most 2*elementSize*#elemetns
Disadvantages: high latency: when the array is full, it will take O(n) to add an element, so you need to expect that once in a while, there will be costly operation.
(2)Skip list The skip list also allows you also O(logn) seek and O(1) insertion at the end, but it doesn't have latency issues. However, it will suffer more from cache misses then an array. Space used is on average elementSize*#elements + pointerSize*#elements*2 for a skip list.
Advantages: O(1) insertion, no costly ops.
Distadvantages: bad caching is expected.
Suggestion:
I suggest using an array if latency is not an issue. If it is, you should better use a skip list.
In both, finding the desired interval is:
findInterval(T1,T2):
start <- data.find(T1)
end <- data.find(T2)
for each element in data from T1 to T2:
yield element
Either BTree or Binary Search Tree could be a good in-memory data structure to accomplish the above. Just save the timestamp in each node and you can do a range query.
You can add them all to a simple array and sort them.
Do a binary search to located both T1 and T2. All the array elements between them are what you are looking for.
This is helpful if the searching is done only after all the elements are added. If not you can use an AVL or Red-Black tree
How about a relation interval tree (encode your items as intervals containing only a single element, e.g., [a,a])? Although, it has been said already that the ratio of the anticipated operations matter (a lot actually). But here's my two cents:
I suppose an item X that is inserted at time t(X) is associated with that timestamp, right? Meaning you don't insert an item now which has a timestamp from a week ago or something. If that's the case go for the simple array and do interpolation search or something similar (your items will already be sorted according to the attribute that your query refers to, i.e., the time t(X)).
We already have an answer that suggests trees, but I think we need to be more specific: the only situation in which this is really a good solution is if you are very specific about how you build up the tree (and then I would say it's on par with the skip lists suggested in a different answer; ). The objective is to keep the tree as full as possible to the left - I'll make clearer what that means in the following. Make sure each node has a pointer to its (up to) two children and to its parent and knows the depth of the subtree rooted at that node.
Keep a pointer to the root node so that you are able to do lookups in O(log(n)), and keep a pointer to the last inserted node N (which is necessarily the node with the highest key - its timestamp will be the highest). When you are inserting a node, check how many children N has:
If 0, then replace N with the new node you are inserting and make N its left child. (At this point you'll need to update the tree depth field of at most O(log(n)) nodes.)
If 1, then add the new node as its right child.
If 2, then things get interesting. Go up the tree from N until either you find a node that has only 1 child, or the root. If you find a node with only 1 child (this is necessarily the left child), then add the new node as its new right child. If all nodes up to the root have two children, then the current tree is full. Add the new node as the new root node and the old root node as its left child. Don't change the old tree structure otherwise.
Addendum: in order to make cache behaviour and memory overhead better, the best solution is probably to make a tree or skip list of arrays. Instead of every node having a single time stamp and a single value, make every node have an array of, say, 1024 time stamps and values. When an array fills up you add a new one in the top level data structure, but in most steps you just add a single element to the end of the "current array". This wouldn't affect big-O behaviour with respect to either memory or time, but it would reduce the overhead by a factor of 1024, while latency is still very small.

Resources