Minimum number of Trips [closed] - algorithm

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
I have latitude and longitude points of N societies, order count of these societies, I also have latitude and longitude points of a warehouse from where the trucks will deploy and will be sent to these various societies(like Amazon deliveries). A truck can deliver maximum 350 orders (order count < 350). So no need to consider items with order count above 350 (We generally would send two trucks there or a bigger truck). Now I need to determine a pattern in which the trucks should be deployed in such a way that a minimum number of trips occur.
Considering that we determine the distance between two societies or warehouses is 'X' from this script is accurate, How do we solve this? I first thought that we could solve it using sum of subset problem, maybe? Seems like dp on graphs to me, traveling salesman problem with infinite number of salemans.
There are no restrictions on the number of trucks.

This is a typical Travelling salesman problem (TSP) which is known as NP-complete. It means that if you are looking for the optimal solution you have to test most of combinatorics. And as you know, !350 is tremendeous.
Nevertheless, as Henry suggests, you can look for a good solution which is not necessarily the best. A lot of algorithm called "heuristic" let you find one good solution in a very efficient way. Just have a look here for some examples https://en.wikipedia.org/wiki/Travelling_salesman_problem.
The most simple heuristic algorithm may be a greedy solution like always take the closest unvisited point as next society.

Related

What is the best algorithm for optimizing a combination of variables? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 20 hours ago.
Improve this question
I want to program a software that calculates the best combination of materials to use base on parameters such as its tensile strength, elastic modulus, stiffness, and results from doing certain tests from those materials. Those each factor are going to be weighted differently in a WDM. Is there an algorithm that would allow me to find the best combination without actually going through all the combinations and doing each individual calculations? I will be working with a lot of data, so efficiency is important
I tried researching algorithms like kruskal's and other things, but I'm not very fammiliar with them
First step is to write down an equation to calculate a number that you want to optimize.
If you can do that and the equation has no squares or other exponential terms then this is the classical linear programming problem https://en.wikipedia.org/wiki/Linear_programming
Your equation needs to look something like this:
max O = n1 * p1 + n2 * p2 - n3 * p3 ...
If so, then your best bet is to choose a linear programming package ( ask google ) with a good introductory tutorial and plug your problem into that. After a day or so on a steep learning curve, your problem will become almost trivial.
If you cannot do that, then you will need to use some sort of hill climbing algorithm - probably best to hire an expert to help with that.

n balls and n cups algorithm design [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 days ago.
Improve this question
You are given n balls and n cups. Each cup holds a particular weight, and once a ball is placed in it tells you whether the ball is too heavy or light or just right. You can’t compare the weight of the balls directly. A perfect pairing between balls and cups exist. Design an expected nlogn algorithm to find the pairing. Hint: modify quicksort.
I’ve thought about this problem for a long time with no leads.
Is there a efficient way to compare the weight of two balls, or am I thinking about this wrong? Can someone please give a hint?
If you compare all balls with a single randomly picked cup, you will find the matching ball, and the other balls will be partitioned into those higher and those lower. You can use the matching ball to also partition the cups in a similar way. Then you have essentially randomized quicksort.

Algorithm to travel most cities by a fixed distance? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
Say I'm a runner, ran a fixed distance of 42KM, no more, no less.
There are a couple of cities (or shops if you think distances between cities are normally bigger than 42KM) can be traversed in this range.
You can start from ANY vertex(city), how to schedule a route so that I can reach the most number of cities? The runner visit each city exactly once and returns to the origin city. (When the runner returned to the original point, the KMs he ran could be smaller than 42KM)
In real world, this graph should be a cyclic able, non-directed, weighted graph.
However, you are welcome to give any opinion including changing the constraints.
Edit:
I had a brute force solution as follows, still trying to find out a better solution.
(1) setup a collection of possible result set (E.g. 4 cities, a, b, c, d; then I get a combination of 2 cities[ab,ac,ad,bc,bd,cd], 3 cities[abc,abd,acd,bcd], 4 cities[abcd]);
(2) run TSP on each of this result, the result is a distance; if this distance is smaller than 42KM, this result is a candidate.
(3) from the candidate list, choose the one with most cities. This is a brute force solution, however.

How to select the number of cluster centroid in K means [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I am going through a list of algorithm that I found and try to implement them for learning purpose. Right now I am coding K mean and is confused in the following.
How do you know how many cluster there is in the original data set
Is there any particular format that I have follow in choosing the initial cluster centroid besides all centroid have to be different? For example does the algorithm converge if I choose cluster centroids that are different but close together?
Any advice would be appreciated
Thanks
With k-means you are minimizing a sum of squared distances. One approach is to try all plausible values of k. As k increases the sum of squared distances should decrease, but if you plot the result you may see that the sum of squared distances decreases quite sharply up to some value of k, and then much more slowly after that. The last value that gave you a sharp decrease is then the most plausible value of k.
k-means isn't guaranteed to find the best possible answer each run, and it is sensitive to the starting values you give it. One way to reduce problems from this is to start it many times, with different starting values, and pick the best answer. It looks a bit odd if an answer for larger k is actually larger than an answer for smaller k. One way to avoid this is to use the best answer found for k clusters as the basis (with slight modifications) for one of the starting points for k+1 clusters.
In the standard K-Means the K value is chosen by you, sometimes based on the problem itself ( when you know how many classes exists OR how many classes you want to exists) other times a "more or less" random value. Typically the first iteration consists of randomly selecting K points from the dataset to serve as centroids. In the following iterations the centroids are adjusted.
After check the K-Means algorithm, I suggest you also see the K-means++, which is an improvement of the first version, as it tries to find the best K for each problem, avoiding the sometimes poor clusterings found by the standard k-means algorithm.
If you need more specific details on implementation of some machine learning algorithm, please let me know.

How will greedy work in this coin change case [closed]

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 9 years ago.
Improve this question
The problem is here
Say I have just 25-cent, 10-cent and 4-cent coins and my total amount is 41. Using greedy, I'll pick 25-cent and then 10-cent, and then the remaining 6 cents can not be made.
So my question is, does greedy in this case will tell me that there is no solution?
It looks like your problem was answered right in the the Greedy algorithm wiki: http://en.wikipedia.org/wiki/Greedy_algorithm#Cases_of_failure
Imagine the coin example with only 25-cent, 10-cent, and 4-cent coins. The greedy algorithm would not be able to make change for 41 cents, since after committing to use one 25-cent coin and one 10-cent coin it would be impossible to use 4-cent coins for the balance of 6 cents, whereas a person or a more sophisticated algorithm could make change for 41 cents with one 25-cent coin and four 4-cent coins.
The greedy algorithm mentioned in your link assumes the existence of a unit coin. Otherwise there are some integer amounts it can't handle at all.
Regarding optimality - as stated there, it depends on the available coins. For {10,5,1} for example the greedy algorithm is always optimal (i.e. returns the minimum number of coins to use). For {1,3,4} the greedy algorithm is not guaranteed to be optimal (it returns 6=4+1+1 instead of 6=3+3).
It seems that greedy algorithm is not always the best and this case is used as example to illustrate when it doesn't work
See example in Wikipedia

Resources