How to write functions of functions in Scheme - scheme

I am supposed to write a function called (nth-filtered f n), where f is a function of one variable and n is a natural number, which evaluates to the nth natural number such that f applied to that number is #t.
If we called
(nth-filtered even? 1) we would get 2
(nth-filtered prime? 10) we would get 29
How do I make it so that it works for any sequential function? What should I think about when approaching this type of problem?

A variable is a variable and + is also a variable. The main difference between a function and some other data type is that you can wrap a function name in parentheses with arguments and it will become a new value.
eg.
(define (double fun)
(lambda (value)
(fun (fun value))))
(define (add1 v)
(+ 1 v))
(define add2 (double add1))
(add2 1) ; ==> 3
Now the contract doesn't say so you deduct by looking that you do (fun ...) that fun needs to be a function. Imagine this:
(define test (double 5)) ; probably works OK
(test 1)
The last one fails since you get application: 5 is not a procedure or something similar. The error message is not standardized.
How to attack your task is by making a helper that has the same arguments as your function but in addition the current number that I guess starts at 1. As I demonstrated you use the function variable as a function and recurse by always increasing the number and reducing n when the f call was #t. The actual function will just use the helper by passing all the parameters in addition to your state variable.

Your problem requires a fold, which is the standard way to iterate other a list while keeping a record of things done so far.
Here a very rackety method using for/fold:
(define (nth-filtered predicate index)
(for/fold ([count 0]
[current #f] #:result current)
([n (in-naturals 1)]) ; we start at 1 but we could start at 0
#:break (= count index)
(values (if (predicate n) (add1 count) count)
n)))
for/fold takes a list of initial state. Here we define count as the number of times the given predicate returned #t and current as the currently tested value.
Then it takes a list of iterators, in this case we only iterate infinitely over (in-naturals).
To make it stop, we provide a #:break condition, which is "when the number of truthy predicates (count) is equal to the requested amount (index)".
for/fold requests that it's body finishes with a list of values for each "state" variable, in order to update them for the next iteration. Here we provide two values: one is the new count, the other is just the current n.
You can try it out, it works as you requested:
> (nth-filtered even? 1)
2
> (require math/number-theory)
> (nth-filtered prime? 10)
29
> (nth-filtered prime? 5)
11

Related

Racket variable memory

Given this code:
(define (wrapper n)
(define (sum-ints)
(set! n (+ n 1))
(display n)(newline)
(if (= n 3)
n
(+ n (sum-ints))))
(sum-ints))
Calling this procedure with n = 0
(wrapper 0) =>
1
2
3
6
I had expected the process to increment n to a value of 3, and then as it returns, add 3 to 3 to 3 for an output of 3 3 3 9.
Does the inner procedure store a shadow copy of n?
Oog, mutation is nasty. The issue here is that "plus" is evaluated left-to-right. Specifically, let's consider the case when n=2. The expression (+ n (sum-ints)) is evaluated left-to-right. First, the identifier + evaluates to the plus function. Then, n evaluates to 2. Then, the recursive call is made, and the result is 3. Then, we add them together and the result is 5.
You'll see the same result in Java, or any other language that defines left-to-right evaluation of subexpressions.
Solution to this particular problem, IMHO: don't use mutation. It's needed in only
about 10% of the cases that people want to use it.

Having trouble with a function in Scheme

so i am trying to understand this piece of code, and after staring at it for far too long i decided to ask here if anyone could help me understand how and why it works
(define knock-knock
(letrec ([dig (lambda (i)
(cons (* i (list-ref knock-knock (- i 1)))
(dig (+ i 1))))])
(cons 1 (dig 1))))
the function is then called by name with the value:
(list-ref knock-knock 5)
So my main problem is that i can not see where the letrec would end. the other thing is that i am not given a list, so what is the 4th element in the list that i am supposed to reference in line 3?
First, a note: this is not normal Scheme, as it requires lazy evaluation.
In lazy evaluation, values are only computed when they are needed. So, for defining knock-knock, we can just do
(cons 1 <thunk: (dig 1)>)
i.e., we generate a pair, but we don't need the second element, so we defer its evaluation until later.
When we actually want to evaluate the second element, we will already have knock-knock defined, so we can reference it.
The next element is computed by taking the previous (i-1-st) element, and multiplies it by i. So this will generate the series {n!}: 1,1,2,6,24,...
A straightforward translation of this code to the (normally lazy) Haskell language goes like this:
knock :: [Int]
knock = 1 : dig 1
where dig i = (i * knock !! (i-1)) : dig (i+1)

Scheme - syntax with if statements

Can anyone explain why this isn't working? I am following the documentation and I cannot understand why I get an error:
(define (functionName n)
(if (n < 10) ;;if condition
1 ;; then condition
3)) ;; else condition
I get the error:
application: not a procedure;
expected a procedure that can be applied to arguments
given: 5
arguments...:
#<procedure:<>
10
You can see this in two ways. Your code is correct and you just called it wrong (bad type for n) or your code was accidentally written in infix notation. I'll illustrate both:
Passed wrong argument
n can be any data type and it can even be a procedure and if it is there is nothing wrong with your code:
(define (compare-15 predicate-procedure argument)
(predicate-procedure 15 argument))
(define (compare-2 predicate-procedure argument)
(predicate-procedure 2 argument))
(functionName compare-15) ; ==> 3
(functionName compare-2) ; ==> 1
What happens is that your procedure is calling the supplied procedure with a procedure for comparing < and an argument.
Accidental infix
Algol programmers are used to prefix fun( expr ) and infix x cmp y while in LISP dialects all those have one common form and that is prefix all the way: (fun expr) and (cmd x y).
(define (function-name n)
(if (< n 10) ;; predicate expression
1 ;; consequent expression
3)) ;; alternative expression
(function-name 15) ; ==> 3
(function-name 2) ; ==> 1
Since Scheme can have functions as argument, meaning every argument can be put in the first position, it might be exactly what you wanted and Scheme doesn't know until it gets a number to be called as a procedure that something is wrong.
The error message is quite clear when you know that every procedure call is called application. It expected to call a procedure but behind the variable n there was a number. "expected a procedure that can be applied to arguments. given: 5" probably makes more sense now?
Try this:
(define (functionName n)
(if (< n 10)
1
3))
Remember: Scheme uses prefix notation, meaning that all operators must go before the operands. In other words, this is wrong: (n < 10), and this is correct: (< n 10).
The function should be the first thing in the if (scheme uses prefix notation, not infix).
(define (functionName n)
(if (< n 10) ;;if condition
1 ;; then condition
3)) ;; else condition
Then
(functionName 2)
Outputs
1
when I run it in Chicken Scheme.

Unable to evaluate a lambda expression as argument in SICP ex-1.37

The problem can be found at http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_thm_1.37
The problem is to expand a continuing fraction in order to approximate phi. It suggests that your procedure should be able to calculate phi by evaluating:
(cont-frac (lambda (i) 1.0)
(lambda (i) 1.0)
k)
My solution is as follows:
(define (cont-frac n d k)
(if (= k 1) d
(/ n (+ d (cont-frac n d (- k 1))))))
This solution works when calling (cont-frac 1 1 k), but not when using the lambda expressions as the problem suggests. I get what looks like a type error
;ERROR: "ex-1.37.scm": +: Wrong type in arg1 #<CLOSURE <anon> (x) 1.0>
; in expression: (##+ ##d (##cont-frac ##n ##d (##- ##k 1)))
; in scope:
; (n d k) procedure cont-frac
; defined by load: "ex-1.37.scm"
;STACK TRACE
1; ((##if (##= ##k 1) ##d (##/ ##n (##+ ##d (##cont-frac ##n ##d ...
My question is two-part:
Question 1. Why am I getting this error when using the lambda arguments? I (mistakenly, for sure) thought that (lambda (x) 1) should evaluate to 1. It clearly does not. I'm not sure I understand what it DOES evaluate to: I presume that it doesn't evaluate to anything (i.e., "return a value" -- maybe the wrong term for it) without being passed an argument for x.
It still leaves unanswered why you would have a lambda that returns a constant. If I understand correctly, (lambda (x) 1.0) will always evaluate to 1.0, regardless of what the x is. So why not just put 1.0? This leads to:
Question 2. Why should I use them? I suspect that this will be useful in ex-1.38, which I've glanced at, but I can't understand why using (lambda (x) 1.0) is any different that using 1.0.
In Scheme lambda expression creates a function, therefore expression such as:
(lambda (i) 1.0)
really does have result, it is a function object.
But if you add parentheses around that expression, it will indeed be evaluated to 1.0 as you expected:
((lambda (i) 1.0))
Using of lambdas in that exercise is necessary for building general solution, as you've correctly noticed in exercise 1.38, you'll be using the same implementation of cont-frac function but with different numerator and denominator functions, and you'll see an example, where you should calculate one of them in runtime using loop counter.
You could compare your exercise solutions with mine, e.g. 1.37 and 1.38
(/ n (+ d (cont-frac n d (- k 1))))))
In this case 'd' being the lambda statement, it doesn't make any sense to '+' it, same for 'n' and '/' try something like
(/ (n k) (+ (d k) (cont-frac n d (- k 1))))))
you'll see why in the next exercise you can also make this tail-recursive
I named my variables F-d and F-n instead of d and n, becuase they accept a function that calculates the numerator and denominator terms. (lambda (i) 1.0) is a function that accepts one argument and returns 1.0, 1.0 is just a number. In other continued fractions, the value may vary with the depth (thus why you need to pass k to the numerator and denomenator function to calculate the proper term.

How to convert this code to Scheme

So basically this code's purpose is to simply print out the first n even numbers.
for (i = 0; i <=n; i+= 2)
{
print i;
}
Thing is though, I don't understand Scheme at all. So, help please.
There are several ways to convert the code in the question to Scheme. The first one I can think of:
(define (print-even n)
(let loop ((i 0))
(if (<= i n)
(begin
(print i)
(newline)
(loop (+ i 2))))))
Notice this:
The solution is written as a recursive procedure
Instead of a for loop, I'm using a construct called a named let, which permits the initialization of some iteration variables (i in this case, initialized to 0) and the repeated execution of a recursive procedure (loop in this case), producing an effect similar to a for, even in performance
The stop condition in the "loop" is handled with essentially the same expression: repeat the body of the iteration as long as (<= i n), when that condition becomes false, the iteration ends
The begin surrounds the body of the "loop", just as the curly braces {} do in the original code
The print procedure performs the expected operation; for readability I added a new line after printing each number
The increment part of the original loop i += 2 is handled by the expression (+ i 2), inside the recursive call
So you see, the process being executed is essentially the same, only the way to write it (the syntax!) is different. Give it a try, type this:
(print-even 6)
... And the following will get printed on the screen:
0
2
4
6
Another possible way to implement the procedure, more similar to the original code, although (this is completely subjective) less idiomatic than the previous one:
(define (print-even n)
(do ((i 0 (+ i 2))) ((> i n))
(print i)
(newline)))
Finally, if you're using Racket this will seem even more familiar to you:
#lang racket
(define (print-even n)
(for ((i (in-range 0 (+ n 1) 2)))
(print i)
(newline)))
The first big difference between Scheme and other languages is this: In Scheme, you do (almost) everything recursively.
To implement a simple loop, for instance, you would define a recursive function. This function would first check to see whether it's time to break out of the loop; if is is, it would return the final value. (There is no final value in this case, so it would just return something like (void) or '().) Otherwise, the function would do whatever it's supposed to do, then call itself again.
Any loop variables (such as i) become arguments to the function.
Hopefully this helps you understand how to do this.
The Scheme way to do something like this is using a recursive function like the one below.
(define (doit value n)
(if (<= value n)
(begin
;;...perform loop body with x...
(display value)(newline)
(doit (+ value 2) n))))
To call this function you call (doit 2 n) where n is your n in the for loop.
With regards to learning Scheme, I recommend the first two links below.
For additional information on Scheme see
SICP
How to Design Programs
Schemers
Related Stackoverflow Question
Scheme Cookbook Looping Constructs

Resources