I'm trying to find a efficient solution for the next riddle:
i have a logical matrix at (n * n) size filled in false values
i need to create a function that will get zero or one as argument it will shift all
the values in the matrix one step to the left (meaning the first
element on the first row is deleted and the last element in the last
row is our new bit) and return true if there is a row/column in our
matrix contains only one's values.
No limitation on the data structure.
My naive solution in javascript:
const next = (bit, matrix) => {
matrix.shift()
matrix.push(bit);
const matrix_size = Math.sqrt(matrix.length);
let col_sum = 0;
let row_sum = 0;
for (let i = 0; i < matrix.length; ++i) {
col_sum = matrix[i];
row_sum += matrix[i];
if ((i + 1) % matrix_size === 0) {
if (row_sum === matrix_size) return true;
row_sum = 0;
}
for (let j = i + matrix_size;j < (i + ((matrix_size * matrix_size) - 1)); j += matrix_size) {
col_sum += matrix[j];
}
if (col_sum === matrix_size) return true;
}
return false;
}
i used 1d array as data structure but it doesn't really help my to reduce time complexity.
Love to hear some ideas :)
Let’s think about following example matrix:
[0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 1, 1,
1, 1, 1, 1]
and push zero 16 times.
Then, False, True, True, True, False, True, True, True, False, True, True, True, False, False False and False will be obtained.
There is cyclic behavior (False, True, True, True).
If the length of continued ones was fixed, it isn’t necessary to recalculate every time in update.
Updated the matrix, the length of continued ones at top-left and bottom-right can be change, and it can be needed to update the cyclic memory.
Maintaining continued ones sequences, maintaining total count of cyclic behavior affected by the sequences, the complexity for the rows will be in O(1).
In case of column, instead of shifting and pushing, let matrix[cur]=bit and cur = (cur+1)%(matrix_size*matrix_size) to represent cur as the actual upper-left of the matrix.
Maintaining col_sum of each column, maintaining total count satisfying the all-ones-condition, the complexity will be O(1).
class Matrix:
def __init__(self, n):
self.mat = [0] * (n*n)
self.seq_len = [0] * (n*n)
self.col_total = [0] * n
self.col_archive = 0
self.row_cycle_cnt = [0] * n
self.cur = 0
self.continued_one = 0
self.n = n
def update(self, bit):
prev_bit = self.mat[self.cur]
self.mat[self.cur] = bit
# update col total
col = self.cur % self.n
if self.col_total[col] == self.n:
self.col_archive -= 1
self.col_total[col] += bit - prev_bit
if self.col_total[col] == self.n:
self.col_archive += 1
# update row index
# process shift out
if prev_bit == 1:
prev_len = self.seq_len[self.cur]
if prev_len > 1:
self.seq_len[(self.cur + 1) % (self.n * self.n)] = prev_len-1
if self.n <= prev_len and prev_len < self.n*2:
self.row_cycle_cnt[self.cur % self.n] -= 1
# process new bit
if bit == 0:
self.continued_one = 0
else:
self.continued_one = min(self.continued_one + 1, self.n*self.n)
# write the length of continued_one at the head of sequence
self.seq_len[self.cur+1 - self.continued_one] = self.continued_one
if self.n <= self.continued_one and self.continued_one < self.n*2:
self.row_cycle_cnt[(self.cur+1) % self.n] += 1
# update cursor
self.cur = (self.cur + 1) % (self.n * self.n)
return (self.col_archive > 0) or (self.row_cycle_cnt[self.cur % self.n] > 0)
def check2(self):
for y in range(self.n):
cnt = 0
for x in range(self.n):
cnt += self.mat[(self.cur + y*self.n + x) % (self.n*self.n)]
if cnt == self.n:
return True
for x in range(self.n):
cnt = 0
for y in range(self.n):
cnt += self.mat[(self.cur + y*self.n + x) % (self.n*self.n)]
if cnt == self.n:
return True
return False
if __name__ == "__main__":
import random
random.seed(123)
m = Matrix(4)
for i in range(100000):
ans1 = m.update(random.randint(0, 1))
ans2 = m.check2()
assert(ans1 == ans2)
print("epoch:{} mat={} ans={}".format(i, m.mat[m.cur:] + m.mat[:m.cur], ans1))
Related
That is a question at leetcode website.
https://leetcode-cn.com/problems/trapping-rain-water/
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.
I wrote the solution below.
int solution(vector<int>& height) {
int total = 0;
for (auto pos = height.begin(); pos != height.end(); pos++) {
if (*pos <= *(pos + 1))
continue;
for (auto lmaxpos = pos; *pos >= *(pos + 1); pos++) {
total = total + *lmaxpos - *(pos + 1);
for (; *(pos + 1) <= *lmaxpos; pos++) {
total = total + *lmaxpos - *(pos + 1);
if (*pos >= *(pos + 1)) {
total = total - (lmaxpos - pos) * (*lmaxpos - *pos);
break;
}
break;
}
break;
}
}
return total;
}
But after testing, i find that i have made some logical mistakes and i cann't find it out.
kindly ask you for help.
Traverse the array from both directions, storing the max_height seen so far. Now for each index, the water at that index is max(0, min(left_max, right_max) - cur_height).
E.g.,
input: [0,1,0,2,1,0,1,3,2,1,2,1]
max_from_left: [0,1,1,2,2,2,2,3,3,3,3,3]
max_from_right: [3,3,3,3,3,3,3,3,2,2,2,1]
water: [0-0, 1-0, 2-2, 2-1, 2-0, 2-1, 3-3, 2-2, 2-1, 2-2, 1-1]
water: [0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 0]
sum(water) = 6
Here is a commented/explained solution.
Find maximum height of bar from the left end upto an index i in the array \text{left_max}left_max.
Find maximum height of bar from the right end upto an index i in the array \text{right_max}right_max.
Iterate over the \text{height}height array and update ans
from typing import List
def trapping_water_container(list: List) -> int:
l = 0
r = len(list) - 1
total, maxL, maxR = 0, 0, 0
while l < r:
# Identify the pointer with the lesser value
if list[l] <= list[r]:
# Check if the value for the left
# pointer is smaller than MaxLeft
if list[l] < maxL:
# Calculate the volume for this pointer
total += maxL - list[l]
else:
# Update the MaxLeft
maxL = list[l]
l += 1
else:
# Check if the value for the right
# pointer is smaller than MaxRight
if list[r] < maxR:
# Calculate the volume for this pointer
total += maxR - list[r]
else:
# Update the MaxRight
maxR = list[r]
r -= 1
return total
I have problem with my homework.
Given a board of dimensions m x n is given, cut this board into rectangular pieces with the best total price. A matrix gives the price for each possible board size up through the original, uncut board.
Consider a 2 x 2 board with the price matrix:
3 4
3 6
We have a constant cost for each cutting for example 1.
Piece of length 1 x 1 is worth 3.
Horizontal piece of length 1 x 2 is worth 4.
Vertical piece of length 1 x 2 is worth 3.
Whole board is worth 6.
For this example, the optimal profit is 9, because we cut board into 1 x 1 pieces. Each piece is worth 3 and we done a 3 cut, so 4 x 3 - 3 x 1 = 9.
Second example:
1 2
3 4
Now I have to consider all the solutions:
4 1x1 pieces is worth 4x1 - (cost of cutting) 3x1 = 1
2 horizontal 1x2 is worth 2x2 - (cost of cutting) 1x1 = 3
2 vertical 1x2 is worth 3x2 - (cost of cutting) 1x1 = 5 -> best optimal profit
1 horizontal 1x2 + 2 x (1x1) pieces is worth 2 + 2 - (cost of cutting) 2 = 2
1 vertical 1x2 + 2 x (1x1) pieces is worth 3 + 2 - (cost of cutting) 2 = 3
I've read a lot about rod cutting algorithm but I don't have any idea how to bite this problem.
Do you have any ideas?
I did this in Python. The algorithm is
best_val = value of current board
check each horizontal and vertical cut for better value
for cut point <= half the current dimension (if none, return initial value)
recur on the two boards formed
if sum of values > best_val
... best_val = that sum
... record cut point and direction
return result: best_val, cut point, and direction
I'm not sure what you'll want for return values; I gave back the best value and tree of boards. For your second example, this is
(5, [[2, 1], [2, 1]])
Code, with debugging traces (indent and the labeled prints):
indent = ""
indent_len = 3
value = [[1, 2],
[3, 4]]
def best_cut(high, wide):
global indent
print indent, "ENTER", high, wide
indent += " " * indent_len
best_val = value[high-1][wide-1]
print indent, "Default", best_val
cut_vert = None
cut_val = best_val
cut_list = []
# Check horizontal cuts
for h_cut in range(1, 1 + high // 2):
print indent, "H_CUT", h_cut
cut_val1, cut_list1 = best_cut(h_cut, wide)
cut_val2, cut_list2 = best_cut(high - h_cut, wide)
cut_val = cut_val1 + cut_val2
if cut_val > best_val:
cut_list = [cut_list1, cut_list2]
print indent, "NEW H", h_cut, cut_val, cut_list
best_val = cut_val
cut_vert = False
best_h = h_cut
# Check vertical cuts
for v_cut in range(1, 1 + wide // 2):
print indent, "V_CUT", v_cut
cut_val1, cut_list1 = best_cut(high, v_cut)
cut_val2, cut_list2 = best_cut(high, wide - v_cut)
cut_val = cut_val1 + cut_val2
if cut_val > best_val:
cut_list = [cut_list1, cut_list2]
print indent, "NEW V", v_cut, cut_val, cut_list
best_val = cut_val
cut_vert = True
best_v = v_cut
# Return result of best cut
# Remember to subtract the cut cost
if cut_vert is None:
result = best_val , [high, wide]
elif cut_vert:
result = best_val-1, cut_list
else:
result = best_val-1, cut_list
indent = indent[indent_len:]
print indent, "LEAVE", cut_vert, result
return result
print best_cut(2, 2)
Output (profit and cut sizes) for each of the two tests:
(9, [[[1, 1], [1, 1]], [[1, 1], [1, 1]]])
(5, [[2, 1], [2, 1]])
Let f(h,w) represent the best total price achievable for a board with height h and width w with cutting price c. Then
f(h,w) = max(
price_matrix(h, w),
f(i, w) + f(h - i, w) - c,
f(h, j) + f(h, w - j) - c
)
for i = 1 to floor(h / 2)
for j = 1 to floor(w / 2)
Here's a bottom-up example in JavaScript that returns the filled table given the price matrix. The answer would be in the bottom right corner.
function f(prices, cost){
var m = new Array(prices.length);
for (let i=0; i<prices.length; i++)
m[i] = [];
for (let h=0; h<prices.length; h++){
for (let w=0; w<prices[0].length; w++){
m[h][w] = prices[h][w];
if (h == 0 && w == 0)
continue;
for (let i=1; i<(h+1>>1)+1; i++)
m[h][w] = Math.max(
m[h][w],
m[i-1][w] + m[h-i][w] - cost
);
for (let i=1; i<(w+1>>1)+1; i++)
m[h][w] = Math.max(
m[h][w],
m[h][i-1] + m[h][w-i] - cost
);
}
}
return m;
}
$('#submit').click(function(){
let prices = JSON.parse($('#input').val());
let result = f(prices, 1);
let str = result.map(line => JSON.stringify(line)).join('<br>');
$('#output').html(str);
});
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<textarea id="input">[[3, 4],
[3, 6]]</textarea>
<p><button type="button" id="submit">Submit</button></p>
<div id="output"><div>
Some thoughts on the problem rather than an answer:
It was a long time ago i studied dynamic programming, but i wrote up the following pseudo code which is think is O(n^2):
// 'Board'-class not included
val valueOfBoards: HashMap<Board, int>
fun cutBoard(b: Board, value: int) : int {
if (b.isEmpty()) return 0
if (valueOfBoards[b] > value) {
return 0;
} else {
valueOfBoards[b] = value
}
int maxValue = Integer.MIN_VALUE
for (Board piece : b.getPossiblePieces()) {
val (cuttingCost, smallerBoard) = b.cutOffPiece(piece)
val valueGained: int = piece.getPrice() - cuttingCost
maxValue = Max(maxValue, valueGained + cutBoard(smallerBoard, value + valueGained))
}
return maxValue;
}
The board class is not trivially implemented, here is some elaboration:
// returns all boards which fits in the current board
// for the initial board this will be width*height subboards
board.getPossiblePieces()
// returns a smaller board and the cutting cost of the cut
// I can see this becoming complex, depends on how one chooses to represent the board.
board.cutOffPiece(piece: Board)
It is not clear to me at the moment if cutOffPiece() breaks the algorithm in that you do not know how to optimally cut. I think since the algorithm will proceed from larger pieces to smaller pieces at some point it will be fine.
I tried to solve the re computation of sub problems (identical boards) by storing results in something like HashMap<Board, price> and comparing the new board with the stored best price before proceeding.
According to your answers I've prepared bottom-up and top-down implementation.
Bottom-up:
function bottomUp($high, $wide, $matrix){
$m = [];
for($h = 0; $h < $high; $h++){
for($w = 0; $w < $wide; $w++){
$m[$h][$w] = $matrix[$h][$w];
if($h == 0 && $w == 0){
continue;
}
for($i = 1; $i < ($h + 1 >> 1) + 1; $i++){
$m[$h][$w] = max(
$m[$h][$w],
$m[$i - 1][$w] + $m[$h - $i][$w] - CUT_COST
);
}
for($i = 1; $i < ($w + 1 >> 1) + 1; $i++){
$m[$h][$w] = max(
$m[$h][$w],
$m[$h][$i - 1] + $m[$h][$w - $i] - CUT_COST
);
}
}
}
return $m[$high-1][$wide-1];
}
Top-down:
function getBestCut($high, $wide, $matrix){
global $checked;
if(isset($checked[$high][$wide])){
return $checked[$high][$wide];
}
$bestVal = $matrix[$high-1][$wide-1];
$cutVert = CUT_VERT_NONE;
$cutVal = $bestVal;
$cutList = [];
for($hCut = 1; $hCut < 1 + floor($high/2); $hCut++){
$result1 = getBestCut($hCut, $wide, $matrix);
$cutVal1 = $result1[0];
$cutList1 = $result1[1];
$result2 = getBestCut($high - $hCut, $wide, $matrix);
$cutVal2 = $result2[0];
$cutList2 = $result2[1];
$cutVal = $cutVal1 + $cutVal2;
if($cutVal > $bestVal){
$cutList = [$cutList1, $cutList2];
$bestVal = $cutVal;
$cutVert = CUT_VERT_FALSE;
$bestH = $hCut;
}
$checked[$hCut][$wide] = $result1;
$checked[$high - $hCut][$wide] = $result2;
}
for($vCut = 1; $vCut < 1 + floor($wide/2); $vCut++){
$result1 = getBestCut($hCut, $vCut, $matrix);
$cutVal1 = $result1[0];
$cutList1 = $result1[1];
$result2 = getBestCut($high, $wide - $vCut, $matrix);
$cutVal2 = $result2[0];
$cutList2 = $result2[1];
$cutVal = $cutVal1 + $cutVal2;
if($cutVal > $bestVal){
$cutList = [$cutList1, $cutList2];
$bestVal = $cutVal;
$cutVert = CUT_VERT_TRUE;
$bestH = $vCut;
}
$checked[$hCut][$vCut] = $result1;
$checked[$high][$wide - $vCut] = $result2;
}
if($cutVert == CUT_VERT_NONE){
$result = [$bestVal, [$high, $wide]];
}else if($cutVert == CUT_VERT_TRUE){
$result = [$bestVal - CUT_COST, $cutList];
}else{
$result = [$bestVal - CUT_COST, $cutList];
}
return $result;
}
Please tell me are they correct implementation of this method?
I wonder if time complexity is O(m^2*n^2) in top-down method?
I was reading Spark correlation algorithm source code and while going through the code, I coulddn't understand this particular peace of code.
This is from the file : org/apache/spark/mllib/linalg/BLAS.scala
def spr(alpha: Double, v: Vector, U: Array[Double]): Unit = {
val n = v.size
v match {
case DenseVector(values) =>
NativeBLAS.dspr("U", n, alpha, values, 1, U)
case SparseVector(size, indices, values) =>
val nnz = indices.length
var colStartIdx = 0
var prevCol = 0
var col = 0
var j = 0
var i = 0
var av = 0.0
while (j < nnz) {
col = indices(j)
// Skip empty columns.
colStartIdx += (col - prevCol) * (col + prevCol + 1) / 2
av = alpha * values(j)
i = 0
while (i <= j) {
U(colStartIdx + indices(i)) += av * values(i)
i += 1
}
j += 1
prevCol = col
}
}
}
I do not know Scala and that could be the reason I could not understand it. Can someone explain what is happening here.
It is being called from Rowmatrix.scala
def computeGramianMatrix(): Matrix = {
val n = numCols().toInt
checkNumColumns(n)
// Computes n*(n+1)/2, avoiding overflow in the multiplication.
// This succeeds when n <= 65535, which is checked above
val nt = if (n % 2 == 0) ((n / 2) * (n + 1)) else (n * ((n + 1) / 2))
// Compute the upper triangular part of the gram matrix.
val GU = rows.treeAggregate(new BDV[Double](nt))(
seqOp = (U, v) => {
BLAS.spr(1.0, v, U.data)
U
}, combOp = (U1, U2) => U1 += U2)
RowMatrix.triuToFull(n, GU.data)
}
The correlation is defined here:
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
The final goal is to understand the Spark correlation algorithm.
Update 1: Relevent paper https://stanford.edu/~rezab/papers/linalg.pdf
I have a object in 2d array and i want to traverse through them top, left, right for that object acutally i want to check if there are making some loop or better making some closed region. See this picture for better explanation.
Acutally i have a X x Y of slot and when user touch on any of the region it adds the brick there so what i want to do is every time user add a brick check if it is making a close path.
I have writen recursive function for that but it's not working fine it always go for the top only and not right and left. Here is the code
function checkTrap(y,x)
if all_tiles[y][x].state == "changed" then --if brick is added at that location
last_move_y = y
last_move_x = x
--check for top
y = y - 1
if( y >= 1 and y <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to top at"..y..", "..x)
return checkTrap(y, x)
end
--check for bottom
y = y + 1
if( y >= 1 and y <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to bottom at"..y..", "..x)
return checkTrap(y, x)
end
--check for left
x = x - 1
if( x >= 1 and x <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to left at"..y..", "..x)
return checkTrap(y, x)
end
--check for right
x = x + 1
if( x >= 1 and x <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to right at"..y..", "..x)
return checkTrap(y, x)
end
elseif all_tiles[y][x] == object then
print("it's a loop"..y..", "..x)
return true;
else
print("not changed")
return false
end
end
Edit : New Solution
function findClosedRegion()
local currFlag, isClose = -1, false
local isVisited = {
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1}}
local k, m = 1, 1
while k <= 6 and not isClose
do
print("K "..k)
while m <= 6 and not isClose
do
print("M "..m)
if not isBrick[k][m] and isVisited[k][m] == -1 then
local cellsi = Stack:Create()
local cellsj = Stack:Create()
cellsi:push(k)
print("Pushed k "..k)
cellsj:push(m)
print("Pushed m "..m)
currFlag = currFlag + 1
isClose = true
while cellsi:getn() > 0 and isClose do
local p = cellsi:pop()
print("Pop p "..p)
local q = cellsj:pop()
print("Pop q "..q)
if( p >= 1 and p <= 6 and q >= 1 and q <= 6 ) then
if(not isBrick[p][q]) then
print("white ")
if(isVisited[p][q] == -1) then
print("invisited")
isVisited[p][q] = currFlag
cellsi.push(p - 1)
cellsj.push(q)
cellsi.push(p + 1)
cellsj.push(q)
cellsi.push(p)
cellsj.push(q + 1)
cellsi.push(p)
cellsj.push(q - 1)
cellsi:list()
else
if(isVisited[p][q] < currFlag) then
print("visited < currFlag")
isClose = false
end
end
end
else
isClose = false
end --p and q if ends here
end -- tile while end
else
--print("changed and not -1")
end
m = m + 1
end -- m while end
if(isClose) then
print("Closed path")
end
m = 1
k = k + 1
end -- k while end
end
The structure of the implementation does not recurse into other directions as only the first branch is called; somehow all neighbors should be included. Apparently you try to implement a kind of Deph-first search on your array. The approach seems absolutely rightm, but all neighbors of a cell have to be taken into account. What perhaps would help most would be to do a connected component analysis and fill all the connected components which touch the border.
EDITED:
Instead if searching with the help of black cells, we should search with white cells because your goal is to find area bound by black cells, even if diagonally adjacent. We should find a group of white cells which is only bordered by black cells and not by the border of the whole main grid. That should satisfy your purpose.
JS Fiddle: http://jsfiddle.net/4d4wqer2/
This is the revised algorithm I came up with:
for each cell and until closed area not found
if white and visitedValue = -1
push cell to stack
while stack has values and closed area not found
pop cell from stack
if invalid cell // Cell coordinates are invalid
this area is not closed, so break from the while
else
if white
if visitedValue = -1
{
mark visited
push neighboring four cells to the stack
}
else
if visitedValue > currVisitNumber // The current cells are part of previous searched cell group, which was not a closed group.
this area is not closed, so break from the while
if closed area found
show message
Programmed using JQuery:
function findArea() {
var currFlag = -1, isvisited = [], isClosed = false;
for (var k = 0; k < rows; k++) { // Initialize the isvisited array
isvisited[k] = [];
for (var m = 0; m < cols; m++)
isvisited[k][m] = -1;
}
for (var k = 0; k < rows && !isClosed; k++)
for (var m = 0; m < cols && !isClosed; m++) {
if (!isblack[k][m] && isvisited[k][m] == -1) { // Unvisited white cell
var cellsi = [k], cellsj = [m];
currFlag++;
isClosed = true;
while (cellsi.length > 0 && isClosed) { // Stack has cells and no closed area is found
var p = cellsi.pop(), q = cellsj.pop();
if (p >= 0 && p < rows && q >= 0 && q < cols) { // The cell coord.s are valid
if (!isblack[p][q])
if (isvisited[p][q] == -1) {
isvisited[p][q] = currFlag; // Mark visited
cellsi.push(p - 1); // Push the coord.s of the four adjacent cells
cellsj.push(q);
cellsi.push(p + 1);
cellsj.push(q);
cellsi.push(p);
cellsj.push(q + 1);
cellsi.push(p);
cellsj.push(q - 1);
}
else
if (isvisited[p][q] < currFlag) // The current group of white cells was part of a previous group of white cells which were found to be unbound by the black cells. So, skip this group.
isClosed = false;
}
else
isClosed = false; // The current cell is out of border. Hence skip the whole group.
}
}
}
if (isClosed)
alert('Closed area found');
}
JS Fiddle: http://jsfiddle.net/4d4wqer2/
I'm would like to create an algorithm that will divide text into 3-evenly sized groups (based on text length). Since this will be put to use for line-breaks, the order of the text needs to be maintained.
For instance this string:
Just testing to see how this works.
would sort to:
Just testing // 12 characters
to see how // 10 characters
this works. // 11 characters
Any ideas?
The "minimum raggedness" dynamic program, also from the Wikipedia article on word wrap, can be adapted to your needs. Set LineWidth = len(text)/n - 1 and ignore the comment about infinite penalties for exceeding the line width; use the definition of c(i, j) as is with P = 2.
Code. I took the liberty of modifying the DP always to return exactly n lines, at the cost of increasing the running time from O(#words ** 2) to O(#words ** 2 * n).
def minragged(text, n=3):
"""
>>> minragged('Just testing to see how this works.')
['Just testing', 'to see how', 'this works.']
>>> minragged('Just testing to see how this works.', 10)
['', '', 'Just', 'testing', 'to', 'see', 'how', 'this', 'works.', '']
"""
words = text.split()
cumwordwidth = [0]
# cumwordwidth[-1] is the last element
for word in words:
cumwordwidth.append(cumwordwidth[-1] + len(word))
totalwidth = cumwordwidth[-1] + len(words) - 1 # len(words) - 1 spaces
linewidth = float(totalwidth - (n - 1)) / float(n) # n - 1 line breaks
def cost(i, j):
"""
cost of a line words[i], ..., words[j - 1] (words[i:j])
"""
actuallinewidth = max(j - i - 1, 0) + (cumwordwidth[j] - cumwordwidth[i])
return (linewidth - float(actuallinewidth)) ** 2
# best[l][k][0] is the min total cost for words 0, ..., k - 1 on l lines
# best[l][k][1] is a minimizing index for the start of the last line
best = [[(0.0, None)] + [(float('inf'), None)] * len(words)]
# xrange(upper) is the interval 0, 1, ..., upper - 1
for l in xrange(1, n + 1):
best.append([])
for j in xrange(len(words) + 1):
best[l].append(min((best[l - 1][k][0] + cost(k, j), k) for k in xrange(j + 1)))
lines = []
b = len(words)
# xrange(upper, 0, -1) is the interval upper, upper - 1, ..., 1
for l in xrange(n, 0, -1):
a = best[l][b][1]
lines.append(' '.join(words[a:b]))
b = a
lines.reverse()
return lines
if __name__ == '__main__':
import doctest
doctest.testmod()
You can try the next simple heuristic for starters: Place to iterators in n/3 and 2n/3 and search for the closest space near each of them.
From http://en.wikipedia.org/wiki/Word_wrap:
SpaceLeft := LineWidth
for each Word in Text
if Width(Word) > SpaceLeft
insert line break before Word in Text
SpaceLeft := LineWidth - Width(Word)
else
SpaceLeft := SpaceLeft - (Width(Word) + SpaceWidth)
This method is used by many modern word processors, such as OpenOffice.org Writer and Microsoft Word. This algorithm is optimal in that it always puts the text on the minimum number of lines.
The answer from "someone" works fine. However, I had problems translating this into SWIFT code. Here is my translation for all those that are interested.
import Foundation
class SplitText{
typealias MinRag = (Float, Int) // meaning (cost for line (so far), word index)
// from http://stackoverflow.com/questions/6426017/word-wrap-to-x-lines-instead-of-maximum-width-least-raggedness?lq=1
class func splitText(text:String, numberOfLines:Int)-> [String]{
//preparations
var words = split(text, maxSplit:100, allowEmptySlices: false, isSeparator:{(s:Character)-> Bool in return s == " " || s == "\n"})
var cumwordwidth = [Int](); //cummulative word widths
cumwordwidth.append(0);
for word in words{
cumwordwidth.append(cumwordwidth[cumwordwidth.count - 1] + count(word));
}
var totalwidth = cumwordwidth[cumwordwidth.count - 1] + count(words) - 1;
var linewidth:Float = Float(totalwidth - (numberOfLines - 1)) / Float(numberOfLines)
// cost function for one line for words i .. j
var cost = { (i:Int,j:Int)-> Float in
var actuallinewidth = max(j - i - 1, 0) + (cumwordwidth[j] - cumwordwidth[i]);
var remainingWidth: Float = linewidth - Float(actuallinewidth)
return remainingWidth * remainingWidth
}
var best = [[MinRag]]()
var tmp = [MinRag]();
//ensure that data structure is initialised in a way that we start with adding the first word
tmp.append((0, -1));
for word in words {
tmp.append((Float.infinity , -1));
}
best.append(tmp);
//now we can start. We simply calculate the cost for all possible lines
for l in 1...numberOfLines {
tmp = [MinRag]()
for j in 0...words.count {
var min:MinRag = (best[l - 1][0].0 + cost(0, j), 0);
var k: Int
for k = 0; k < j + 1 ; ++k {
var loc:Float = best[l - 1][k].0 + cost(k, j);
if (loc < min.0 || (loc == min.0 && k < min.1)) {
min=(loc, k);
}
println("l=\(l), j=\(j), k=\(k), min=\(min)")
}
tmp.append(min);
}
best.append(tmp);
}
//now build the answer based on above calculations
var lines = [String]();
var b = words.count;
var o:Int
for o = numberOfLines; o > 0 ; --o {
var a = best[o][b].1;
lines.append(" ".join(words[a...b-1]));
b = a;
}
return reverse(lines);
}
}