I have a strange segmentation fault that doesn't exist when everything is in 1 .c file, but does exist when I put part of the code in a dynamically linked library and link it to a test file. The complete code for the working 1 .c file code is at the bottom, the complete code for the error system with 2 .c and 1 .h file come first.
Here is the error system:
example.h:
#include <stdio.h>
#include <stdlib.h>
typedef struct MYARRAY {
int len;
void* items[];
} MYARRAY;
MYARRAY *collection;
void
mypush(void* p);
example.c:
#include "example.h"
void
mypush(void* p) {
printf("Here %lu\n", sizeof collection);
puts("FOO");
int len = collection->len++;
puts("BAR");
collection->items[len] = p;
}
example2.c:
This is essentially a test file:
#include "example.h"
void
test_print() {
puts("Here1");
mypush("foo");
puts("Here2");
}
int
main() {
collection = malloc(sizeof *collection + (sizeof collection->items[0] * 1000));
collection->len = 0;
puts("Start");
test_print();
puts("Done");
return 0;
}
Makefile:
I link example to example2 here, and run:
example:
#clang -I . -dynamiclib \
-undefined dynamic_lookup \
-o example.dylib example.c
#clang example2.c example.dylib -o example2.o
#./example2.o
.PHONY: example
The output is:
$ make example
Start
Here1
Here 8
FOO
make: *** [example] Segmentation fault: 11
But it should show the full output of:
$ make example
Start
Here1
Here 8
FOO
BAR
Here2
Done
The weird thing is everything works if it is this system:
example.c:
#include <stdio.h>
#include <stdlib.h>
typedef struct MYARRAY {
int len;
void* items[];
} MYARRAY;
MYARRAY *collection;
void
mypush(void* p) {
printf("Here %lu\n", sizeof collection);
puts("FOO");
int len = collection->len++;
puts("BAR");
collection->items[len] = p;
}
void
test_print() {
puts("Here1");
mypush("foo");
puts("Here");
}
int
main() {
collection = malloc(sizeof *collection + (sizeof collection->items[0] * 1000));
collection->len = 0;
puts("ASF");
test_print();
return 0;
}
Makefile:
example:
#clang -o example example.c
#./example
.PHONY: example
Wondering why it's creating a segmentation fault when it is linked like this, and what I am doing wrong.
I have checked otool and with DYLD_PRINT_LIBRARIES=YES and it shows it is importing the dynamically linked libraries, but for some reason it's segmentation faulting when linked but works fine when it isn't linked.
Your problem is this, in example.h:
MYARRAY *collection;
Since both main.c and example.c include this file, you end up defining collection twice, which results in undefined behavior. You need to make sure you define each object only once. The details are relatively unimportant since anything can happen with undefined behavior, but what's probably happening is that main.c is allocating memory for one object, but the one example.c is using is still NULL. As mentioned in the comments, since you define collection in main.c your linker is able to build the executable without needing to look for that symbol in the dynamic library, so you don't get a link time warning about it being defined there too, and obviously there'd be no cause for a warning at the time you compile the library.
It works for you when you put everything in one file because obviously then you're not defining anything twice, anymore. The error itself is nothing to do with the fact you're using a dynamic library, although that may have made it harder to detect.
It would be better to define this in example.c and provide a constructor function, there's no need for main() to be able to access it directly. But if you must do this, then define it in example.c and just declare an extern identifier in the header file to tell main.c that the object is defined somewhere else.
Related
I've cloned the LuaJIT git repo and built it with:
make STATIC_CC="musl-gcc" BUILDMODE="static"
Then, I compiled a simple Lua "hello world" script into a C header file:
luajit -b test.lua test.h
test.h:
#define luaJIT_BC_test_SIZE 52
static const unsigned char luaJIT_BC_test[] = {
27,76,74,2,10,45,2,0,3,0,2,0,4,54,0,0,0,39,2,1,0,66,0,2,1,75,0,1,0,20,72,101,
108,108,111,32,102,114,111,109,32,76,117,97,33,10,112,114,105,110,116,0
};
After that, I wrote a simple C wrapper by following the official example, test.c:
#include <stdio.h>
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>
#include "test.h"
int main(void) {
int error;
lua_State *L = lua_open();
luaL_openlibs(L);
error = luaL_loadbuffer(L, (const char *) luaJIT_BC_test, luaJIT_BC_test_SIZE, "test") || lua_pcall(L, 0, 0, 0);
if (error) {
fprintf(stderr, "%s", lua_tostring(L, -1));
lua_pop(L, 1);
}
lua_close(L);
return 0;
}
But when I try to build it, it crashes with an error:
$ musl-gcc -static -ILuaJIT/src -LLuaJIT/src -o test test.c -lluajit
/usr/bin/ld: /usr/lib/gcc/x86_64-pc-linux-gnu/12.1.0/libgcc_eh.a(unwind-dw2-fde-dip.o): in function `_Unwind_Find_FDE':
(.text+0x1953): undefined reference to `_dl_find_object'
collect2: error: ld returned 1 exit status
It's related to libgcc, so I tried building everything with musl-clang, but still got the same error. Can someone explain what I'm missing here?
Figured it out - I needed to build LuaJIT with TARGET_XCFLAGS=-DLUAJIT_NO_UNWIND like so:
make STATIC_CC="musl-gcc" BUILDMODE="static" TARGET_XCFLAGS=-DLUAJIT_NO_UNWIND
I guess this just disables C++ exceptions support, but I'm not sure what the real implications are. Seems to work fine, for now.
I want to define an inline function in a header file (.h) which can be included by numerous source files (.c). Here is a minimal example with 1 header and 2 source files:
Header file foo.h
int ifunc(int i);
extern inline
int
ifunc(int i)
{
return i + 1;
}
Source code file: foo.c
#include <stdio.h>
#include "foo.h"
int foo2(int i);
int main()
{
printf("%d\n", foo2(1));
return 0;
}
Source code file foo2.c
#include "foo.h"
int foo2(int i)
{
return ifunc(i);
}
The problem
When I compile with optimization,
gcc -g -Wall -O2 -o foo foo.c foo2.c
$ ./foo
2
everything works fine. However when I turn off optimization, I get this error:
gcc -g -Wall -o foo foo.c foo2.c
/tmp/cc3OrhO9.o: In function `foo2':
foo2.c:5: undefined reference to `ifunc'
Can someone please explain how to fix so that I can run the code with and without -O2? I am using gcc 4.8.5.
if you replace foo.h with
static inline int ifunc(int i)
{
return i + 1;
}
Both will work.
Declaring it extern means it'll be defined somewhere else which in your original example does not happen. And the optimized build doesn't flag as an error because it already optimized it to be inline it but the non-optimized build does not find a definition in any of the .o files (since they were all compiled with ifunc being an extern as defined in foo.h).
Declaring as static inline will ensure that it is local to each file (the downside being that if it does not inline it, you'll end up with each .o that needs it having a local copy, so don't overdo it).
I am trying to build a static library using MinGW.
Everything was going fine until I tried to use the library and got an error saying that add_numbers is an undefined function.
Many other people have had this problem and sorted it out by moving their library to be linked after the source files were included, but that was how I had written my batch file anyway, so that was not of much help.
Here are my sources.
mylib.h
#ifndef MYLIB_H
#define MYLIB_H
int add_numbers(int a, int b, int c);
#endif
mylib.c
#include "mylib.h"
int add_numbers(int a, int b, int c)
{
return a+b+c;
}
I'm building my .a file with the following commands
gcc --std=c89 -c mylib.c -o mylib.o
ar rcs libmylib.a mylib.o
I've also tried with out specifying the standard.
There are no errors or warnings when running this command.
Next, my test program looks like this.
#include <stdio.h>
#include "mylib.h"
int main()
{
printf("The sum of 1, 2, and 3 is %d", add_numbers(1, 2, 3));
getchar();
return 0;
}
And lastly, we build the test with this command.
gcc mylibtest.c -L -lmylib -o test.exe
I've tried moving around those commands into many many different sequences, but always receiving the following error:
C:\Users\Aaron\AppData\Local\Temp\cc0ERpBi.o:mylibtest.c:(.text+0x26): undefined
reference to `add_numbers'
collect2.exe: error: ld returned 1 exit status
E:\my_first_static_library>
Any help would be very appreciated, I've read every tutorial I could find on the art of writing static libraries, as well as a good ten stackoverflow questions.
You are missing a dot after -L:
gcc mylibtest.c -L . -lmylib -o test.exe
I'm playing around with gcc and g++ compiler and trying to compile some C code within those, my purpose is to see how the compiler / linker enforces that when linking a model with some function declaration to a model with that implementation of that function, the correct function are linked ( in terms of parameters passed and values returned )
for example let's take a look at this code
#include <stdio.h>
extern int foo(int b, int c);
int main()
{
int f = foo(5, 8);
printf("%d",f);
}
after compilation within my symbol table I'd have a symbol for foo, but within the elf file format there is not place that describes the arguments taken and the function signature, ( int(int,int) ), so basically if I write some other code such as this:
char foo(int a, int b, int c)
{
return (char) ( a + b + c );
}
compile that model it'll also have some symbol called foo, what if I link these models together, what's gonna happen? I have never thought of this, and how would a compiler overcome this weakness... I know that within g++ the compiler generates some prefix for every symbol regarding to it's namespace, but does it also take in mind the signature? If anyone has ever encountered this it would be great if he could shed some light upon this problem
The problem is solved with name mangling.
In compiler construction, name mangling (also called name decoration)
is a technique used to solve various problems caused by the need to
resolve unique names for programming entities in many modern
programming languages.
It provides a way of encoding additional information in the name of a
function, structure, class or another datatype in order to pass more
semantic information from the compilers to linkers.
The need arises where the language allows different entities to be
named with the same identifier as long as they occupy a different
namespace (where a namespace is typically defined by a module, class,
or explicit namespace directive) or have different signatures (such as
function overloading).
Note the simple example:
Consider the following two definitions of f() in a C++ program:
int f (void) { return 1; }
int f (int) { return 0; }
void g (void) { int i = f(), j = f(0); }
These are distinct functions, with no relation to each other apart
from the name. If they were natively translated into C with no
changes, the result would be an error — C does not permit two
functions with the same name. The C++ compiler therefore will encode
the type information in the symbol name, the result being something
resembling:
int __f_v (void) { return 1; }
int __f_i (int) { return 0; }
void __g_v (void) { int i = __f_v(), j = __f_i(0); }
Notice that g() is mangled even though there is no conflict; name
mangling applies to all symbols.
Wow, I've kept exploring and testing it on my own and I came up with a solution which quietly amazed my mind,
so I wrote the following code and compiled it on a gcc compiler
main.c
#include <stdio.h>
extern int foo(int a, char b);
int main()
{
int g = foo(5, 6);
printf("%d", g);
return 0;
}
foo.c
typedef struct{
int a;
int b;
char c;
char d;
} mystruct;
mystruct foo(int a, int b)
{
mystruct myl;
my.a = a;
my.b = a + 1;
my.c = (char) b;
my.d = (char b + 1;
return my1;
}
now I compiled foo.c to foo.o with gcc firstly and checked the symbol table using
readelf and I had some entry called foo
also after that I compiled main.c to main.o checked the symbol table and it also had some entry called foo, I linked those two together and surprisingly it worked, I ran main.o and obviously encountered some segmentation fault, which makes sense as the actual implementation of foo as implemented in foo.o probably expects three parameters (first one should be struct adders), a parameter which isn't passed in main.o under it's definition to foo then the actual implementation accesses some memory that doesn't belong to it from the stack frame of main, then tries accessing addresses that it thought it got, and ends up with segmentation fault, that's fine,
now I compiled both models again with g++ and not gcc and what came up was amazing.. I found out that the symbol entry under foo.o was _Z3fooii and under main.o it was _Z3fooic, now my guess is that the ii suffix means int int and ic suffix means int char which probably refers to the parameters that should be passed to function hence allowing the compiler to know some function deceleration gets the actual implementation. so I changed my foo declaration in main.c to
extern int foo(int a, int b);
re-compiled and this time got the symbol _Z3fooii, I linked both models again and amazingly this time it worked, I tried running it and again encountered segmentation fault, which again also makes sense as the compiler wont always even authorize correct return values.. anyways what was my original thought - that g++ includes function signature within symbol name and thus enforces the linker to give function implementation get correct parameters to correct function declaration
I am trying to run sample rsa/dsa code using libtomcrypt.
I have installed LibTomMath first as make install, as a result following files are created.
/usr/lib/libtommath.a
/usr/include/tommath.h
After that I installed libtomcrypt with LibTomMath as external library
CFLAGS="-DLTM_DESC -DUSE_LTM -I/usr/include" EXTRALIBS="/usr/lib/libtommath.a " make install
As a result following file is created
/usr/lib/libtomcrypt.a
I am not getting any error while running following command
CFLAGS="-DLTM_DESC -DUSE_LTM -I/usr/include" EXTRALIBS="/usr/lib/libtommath.a " make test
I have gone through this document libtomcrypt_installation and libtomcrypt_resolved to successfully compile using
gcc -DLTM_DESC rsa_make_key_example.c -o rsa -ltomcrypt
or
gcc rsa_make_key_example.c -o rsa -ltomcrypt
no compile error. However when I try to run, I got following error.
./rsa
LTC_ARGCHK 'ltc_mp.name != NULL' failure on line 34 of file src/pk/rsa/rsa_make_key.c
Aborted
Here is my sample rsa code
#include <tomcrypt.h>
#include <stdio.h>
int main(void) {
# ifdef USE_LTM
ltc_mp = ltm_desc;
# elif defined (USE_TFM)
ltc_mp = tfm_desc;
# endif
rsa_key key;
int err;
register_prng(&sprng_desc);
if ((err = rsa_make_key(NULL, find_prng("sprng"), 1024/8, 65537,&key)) != CRYPT_OK) {
printf("make_key error: %s\n", error_to_string(err));
return -1;
}
/* use the key ... */
return 0;
}
Here is my sample dsa code
#include <tomcrypt.h>
#include <stdio.h>
int main(void) {
# ifdef USE_LTM
ltc_mp = ltm_desc;
# elif defined (USE_TFM)
ltc_mp = tfm_desc;
# endif
int err;
register_prng(&sprng_desc);
dsa_key key;
if ((err = dsa_make_key(NULL, find_prng("sprng"), 20, 128,&key)) != CRYPT_OK) {
printf("make_key error: %s\n", error_to_string(err));
return -1;
}
/* use the key ... */
return 0;
}
Here is how I have compiled it successfully,
gcc dsa_make_key_example.c -o dsa -ltomcrypt
When I try to run the code , I am getting following error .
./dsa
segmentation fault
EDIT 1:
I investigated further and found the reason for segmentation fault
#ifdef LTC_MPI
#include <stdarg.h>
int ltc_init_multi(void **a, ...)
{
...
...
if (mp_init(cur) != CRYPT_OK) ---> This line causes segmentation fault
Where am I making mistakes ? How to resolve this problem to run these programs successfully?
I am using linux , gcc. Any help/link will be highly appreciated. Thanks in advance.
It's been a year or so since this was asked, but I have some component of an answer, and a workaround.
The reason mp_init fails is that the "math_descriptor" is uninitialized. mp_init is a defined as
#define mp_init(a) ltc_mp.init(a)
where ltc_mp is a global struct (of type ltc_math_descriptor) that holds pointers to the math routines.
There are several implementations of the math routines available, and a user can choose which they want. For whatever reason, there does not seem to be a default math implementation chosen for certain builds of libtomcrypt. Thus, the init member of ltc_mp is null, and we get the SIGSEGV.
Here is a manual workaround:
You can make your desired ltc_math_descriptor struct available to your main() routine by #defineing one of
LTM_DESC -- built-in math lib
TFM_DESC -- an external fast math package
GMP_DESC -- presumably a GNU MultiPrecision implementation?
Before #include <tomcrypt.h> (or by using -D on the command-line).
Whichever you choose, a corresponding object will be declared:
extern const ltc_math_descriptor ltm_desc;
extern const ltc_math_descriptor tfm_desc;
extern const ltc_math_descriptor gmp_desc;
To use it, manually copy it to the global math descriptor:
E.g., in my case, for the local math imlpementation,
ltc_mp = ltm_desc;
Now libtomcrypt works.