Is bitcoin Merkle tree always binary? - binary-tree

Is bitcoin Merkle tree always binary?
(1) I am wondering about the lookup efficiency of the Merkle tree.
(2) I haven't found any evidence that Merkle trees are mandatory binary, which would allow a O(log2 n) lookup algorithm.
(3) If a node may have an arbitrary number of children, then the lookup function would have a O(logK n * K), where K is the maximum number of allowed child nodes (as far as I remember).

Merkle Trees by definition are binary, look at the original patent here. The tree structure in Bitcoin is binary too.
The trees aren't lookup trees like traditional search trees, rather they're used as a way to get rid of blockchain data later but have a proof that given a "root node" specific data exists in a block.
Instead of having to transmit an entire Bitcoin block with n transactions to show that your transaction exists in a specific block, you only have to provide log(n) nodes from the merkle tree.

Related

How is balancing of binary trees implemented?

I'm studying how to balance trees and I have some questions
Is it possible to balance a normal binary tree? If yes, which algorithm should be used?
Do I necessarily have to use a AVL or Red-black tree to obtain a balanced tree? How do these work?
I read something about rotations, weights but I'm kind of confused right now
Is it possible to balance a normal binary tree? If yes, which
algorithm should be used?
In O(n) you can build a complete tree, and populate it with the elements in in-order traversal.
It cannot be done better, because A BST might in rare cases decay to a chain (linked list), where all nodes have one son as null. In this cases, accessing the element in the middle is O(n) itself.
Do I necessarily have to use a AVL or Red-black tree to obtain a
balanced tree?
There are other balanced trees such as B+ trees, and other data structures (not trees) such as skip-lists. You might want to have a look at a list of known data structures, especially the trees section.
How do these work?
I find the wikipedia articles both on AVL tree and Red-Black tree very informative. If you have something specific you don't understand there - you should ask.
Also: Trying to implement a balanced trees on your own (Implement a known tree, not inventing a new one - of course) - is great for educational purposes, and by doing so - you will definitely understand how it works.
Well... AVL and red-black trees are "normal binary trees" that are balanced, and keep that balance (for some definition of "balanced"). I'm not a computer science teacher to come up with my own explanation of the algorithms, and I guess you aren't looking for a cut&paste from Wikipedia :-)
Now, for balancing binary trees: if the tree is a search tree (i.e. 'sorted', but 'balanced' doesn't really make all that much sense if it's not) you could always just recreate the tree. The simplest algorithm is to use an array with all the elements from the tree, in sorted order (easily obtained from an inorder traversal). Then build an algorithm around this general idea:
take the middle element of the array as the root of the tree. This will create a tree node, and two arrays "left" and "right", which are meant to form the left and right subtrees
Apply this same algorithm recursively to create a tree from the "left" array and one from the "right" array. These two trees become the children of the parent node.
You might have to be careful with the case when the array has an even number of elements: there is no obvious "middle element", and removing one of the two candidates will create arrays of different sizes. I'm too lazy to analyze this further to see if that could offset the whole balancing thing.
Of course, doing something like this every time you change the tree isn't such a great idea; you really want to use self-balancing trees like AVL for that. Doing it after creating the tree might not be all that useful either: you could just use the array itself and do binary searches on it, instead of making a tree. The array IS just another form of a binary tree...
EDIT: there is a reason why a lot of computer scientists have spent a lot of time developing data structures and algorithms that perform well in certain situations. Rolling your own version of a balanced binary tree is unlikely to beat these...
Can you balance an unbalanced tree?
Yes, You can. You use the same balance function you created for your AVL Tree inside a PostOrderTraversal function.
Should You Do it?
No!!! You should recreate it! Balancing the tree will cost you unnecessarily.
How do I recreate it?
Use an InOrderTraversal function to put your nodes into an array. Then use a variable that will always go to the middle of the array and the left middle, right middle and add the nodes to the new Tree.
Is it possible to balance a normal binary tree? If yes, which algorithm should be used?
Do I necessarily have to use a AVL or Red-black tree to obtain a balanced tree? How do these work?
In general, Trees are either unbalanced or balanced. AVL, Red-Black, 2-3, e.t.c. are just trees with some properties and according to their properties they use some extra variables and functions. Those extra variables and function can also be used in the "normal" binary trees. In other words those functions and variables are not bounded to their respective type of tree. The nodes of a "normal" binary tree always had a balance! You just didn't use it because you didn't care if the "normal" binary tree was balanced or not. They also always had a height, depth, e.t.c. You just didn't care. In general, you will realize at one point that all are a trade-off between speed and memory. If you know what you are doing, more memory usage will make your program faster. Less memory usage means more calculations so you will have a slower program.

Create a balanced binary search tree from a stream of integers

I have just finished a job interview and I was struggling with this question, which seems to me as a very hard question for giving on a 15 minutes interview.
The question was:
Write a function, which given a stream of integers (unordered), builds a balanced search tree.
Now, you can't wait for the input to end (it's a stream), so you need to balance the tree on the fly.
My first answer was to use a Red-Black tree, which of course does the job, but i have to assume they didn't expect me to implement a red black tree in 15 minutes.
So, is there any simple solution for this problem i'm not aware of?
Thanks,
Dave
I personally think that the best way to do this would be to go for a randomized binary search tree like a treap. This doesn't absolutely guarantee that the tree will be balanced, but with high probability the tree will have a good balance factor. A treap works by augmenting each element of the tree with a uniformly random number, then ensuring that the tree is a binary search tree with respect to the keys and a heap with respect to the uniform random values. Insertion into a treap is extremely easy:
Pick a random number to assign to the newly-added element.
Insert the element into the BST using standard BST insertion.
While the newly-inserted element's key is greater than the key of its parent, perform a tree rotation to bring the new element above its parent.
That last step is the only really hard one, but if you had some time to work it out on a whiteboard I'm pretty sure that you could implement this on-the-fly in an interview.
Another option that might work would be to use a splay tree. It's another type of fast BST that can be implemented assuming you have a standard BST insert function and the ability to do tree rotations. Importantly, splay trees are extremely fast in practice, and it's known that they are (to within a constant factor) at least as good as any other static binary search tree.
Depending on what's meant by "search tree," you could also consider storing the integers in some structure optimized for lookup of integers. For example, you could use a bitwise trie to store the integers, which supports lookup in time proportional to the number of bits in a machine word. This can be implemented quite nicely using a recursive function to look over the bits, and doesn't require any sort of rotations. If you needed to blast out an implementation in fifteen minutes, and if the interviewer allows you to deviate from the standard binary search trees, then this might be a great solution.
Hope this helps!
AA Trees are a bit simpler than Red-Black trees, but I couldn't implement one off the top of my head.
One of the simplest balanced binary search tree is BB(α)-tree. You pick the constant α, which says how much unbalanced can the tree get. At all times, #descendants(child) <= (1-α) × #descendants(node) must hold. You treat it as normal binary search tree, but when the formula doesn't apply to some node anymore, you just rebuild that part of the tree from scratch, so that it is perfectly balanced.
The amortized time complexity for insertion or deletion is still O(log N), just as with other balanced binary trees.

Applications of red-black trees

What are the applications of red-black (RB) trees? Is there any application where only RB Trees can be used and no other data structures?
A red-black tree is a particular implementation of a self-balancing binary search tree, and today it seems to be the most popular choice of implementation.
Binary search trees are used to implement finite maps, where you store a set of keys with associated values. You can also implement sets by only using the keys and not storing any values.
Balancing the tree is needed to guarantee good performance, as otherwise the tree could degenerate into a list, for example if you insert keys which are already sorted.
The advantage of search trees over hash tables is that you can traverse the tree efficiently in sort order.
AVL-trees are another variant of balanced binary search trees. They were popular before red-black trees were known. They are more carefully balanced, with a maximal difference of one between the heights of the left and right subtree (RB trees guarantee at most a factor of two). Their main drawback is that rebalancing takes more effort.
So red-black trees are certainly a good but not the only choice for this application.
Red Black Trees are from a class of self balancing BSTs and as answered by others, any such self balancing tree can be used. I would like to add that Red-black trees are widely used as system symbol tables. For example they are used in implementing the following:
Java: java.util.TreeMap , java.util.TreeSet .
C++ STL: map, multimap, multiset.
Linux kernel: completely fair scheduler, linux/rbtree.h
Unless you have very specific performance requirements, an R-B tree could be replaced by some other self-balancing binary tree, for example an AVL tree. Choosing between the two of them is basically a performance optimization - they offer the same basic operations.
Not that either of them is definitively "faster" than the other, just that they're different enough that specific uses of them will tend to have slightly different performance, all else being equal. So if you draw your requirements carefully enough, or just by chance, you could end up with one of them being "fast enough" for your use, and the other not. R-B offers slightly faster insertion than AVL, at the cost of slightly slower lookup.
There is no such rule like red black can only be used in a particular case
it depends upon the application in cases like when You have to build the tree only once and you have to query it many times then you can go for a AVL tree because in AVL tree searching is quite fast.. But it is strictly balanced so insertion and deletion may take some time
AVl tree may be used for language dictionery where You have to build the data structure just once
and the red black tree is used in the Completely Fair Scheduler used in current Linux kernels now a days..
the constraints applied on the red black tree also enforce the point that that that the path from the root to the furthest leaf is no more than twice as long as the path from the root to the nearest leaf.
BTW you can look for the various seach and insert etc time required for a red black tree down here
Average Worst case
Space O(n) O(n)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)

Are interval, segment, fenwick trees the same?

Today i listened a lecture about fenwick trees (binary indexed trees) and the teacher says than this tree is a generalization of interval and segment trees, but my implementations of this three data structures are different.
Is this afirmation true? and Why?
The following classification seems sensible although different people are bound to mix these terms up.
Fenwick tree/Binary-indexed tree link
The one where you use a single array and operations on the binary representation to store prefix sums (also called cumulative sums). Elements can be members of a monoid.
Range tree link
The family of trees where each node represents a subrange of a given range, say [0, N]. Used to compute associative operations on intervals.
Interval tree link
Trees where you store actual intervals. Most commonly you take a midpoint, keep the intersecting intervals at the node and repeat the process for the intervals to the left and to the right of the point.
Segment tree link
Similar to a range tree where leaves are elementary intervals in a possibly continuous space rather than discrete and higher nodes are unions of the elementary intervals. Used to check for point inclusion.
I have never heard binary indexed trees called a generalization of anything. It's certainly not a generalization of interval trees and segment trees. I suggest you follow the links to convince yourself of this.
than this tree is a generalization of interval and segment trees
If by "this tree" your teacher meant "the binary indexed tree", then he is wrong.
but my implementations of this three data structures are different
Of course they are different, your teacher never said they shouldn't be. He just said one is a generalization of the other (which isn't true, but still). Either way, the implementations are supposed to be different.
What would have the same implementation is a binary indexed tree and a fenwick tree, because those are the same thing.

Tree Datastructures

I've tried to understand what sorted trees are and binary trees and avl and and and ...
I'm still not sure, what makes a sorted tree sorted? And what is the complexity (Big-Oh) between searching in a sorted and searching in an unsorted tree? Hope you can help me.
Binary Trees
There exists two main types of binary trees, balanced and unbalanced. A balanced tree aims to keep the height of the tree (height = the amount of nodes between the root and the furthest child) as even as possible. There are several types of algorithms for balanced trees, the two most famous being AVL- and RedBlack-trees. The complexity for insert/delete/search operations on both AVL and RedBlack trees is O(log n) or better - which is the important part. Other self balancing algorithms are AA-, Splay- and Scapegoat-tree.
Balanced trees gain their property (and name) of being balanced from the fact that after every delete or insert operation on the tree the algorithm introspects the tree to make sure it's still balanced, if it's not it will try to fix this (which is done differently with each algorithm) by rotating nodes around in the tree.
Normal (or unbalanced) binary trees do not modify their structure to keep themselves balanced and have the risk of, most often overtime, to become very inefficient (especially if the values are inserted in order). However if performance is of no issue and you mainly want a sorted data structure then they might do. The complexity for insert/delete/search operations on an unbalanced tree range from O(1) (best case - if you want the root) to O(n) (worst-case if you inserted all nodes in order and want the largest node)
There exists another variation which is called a randomized binary tree which uses some kind of randomization to make sure the tree doesn't become fully unbalanced (which is the same as a linked list)
A binary search tree is an "tree"-structure where every node has two children-nodes.
The left nodes all have the property of being less than its parent, and the right-nodes are all greater than its parent.
The intressting thing with an binary-tree is that we can search for an value in O(log n) when the tree is properly sorted. Doing the same search in an LinkedList for an example would give us the searchspeed of O(n).
The best way to go about learning datastructures would be to do a day of googling and reading wikipedia articles.
This might get you started
http://en.wikipedia.org/wiki/Binary_search_tree
Do a google search for the following:
site:stackoverflow.com binary trees
to get a list of SO questions which will answer your several questions.
There isn't really a lot of point in using a tree structure if it isn't sorted in some fashion - if you are planning on searching for a node in the tree and it is unsorted, you will have to traverse the entire tree (O(n)). If you have a tree which is sorted in some fashion, then it is only necessary to traverse down a single branch of the tree (typically O(log n)).
In binary tree the right leaf is always smaller then the head, and the left leaf is always bigger, so you can search in sorted tree in O(log(n)), you just need to go right if if the key is smaller than head and to the left if bgger

Resources