Related
Problem: Given two sequences s1 and s2 of '0' and '1'return the shortest sequence that is a subsequence of neither of the two sequences.
E.g. s1 = '011' s2 = '1101' Return s_out = '00' as one possible result.
Note that substring and subsequence are different where substring the characters are contiguous but in a subsequence that needs not be the case.
My question: How is dynamic programming applied in the "Solution Provided" below and what is its time complexity?
My attempt involves computing all the subsequences for each string giving sub1 and sub2. Append a '1' or a '0' to each sub1 and determine if that new subsequence is not present in sub2.Find the minimum length one. Here is my code:
My Solution
def get_subsequences(seq, index, subs, result):
if index == len(seq):
if subs:
result.add(''.join(subs))
else:
get_subsequences(seq, index + 1, subs, result)
get_subsequences(seq, index + 1, subs + [seq[index]], result)
def get_bad_subseq(subseq):
min_sub = ''
length = float('inf')
for sub in subseq:
for char in ['0', '1']:
if len(sub) + 1 < length and sub + char not in subseq:
length = len(sub) + 1
min_sub = sub + char
return min_sub
Solution Provided (not mine)
How does it work and its time complexity?
It looks that the below solution looks similar to: http://kyopro.hateblo.jp/entry/2018/12/11/100507
def set_nxt(s, nxt):
n = len(s)
idx_0 = n + 1
idx_1 = n + 1
for i in range(n, 0, -1):
nxt[i][0] = idx_0
nxt[i][1] = idx_1
if s[i-1] == '0':
idx_0 = i
else:
idx_1 = i
nxt[0][0] = idx_0
nxt[0][1] = idx_1
def get_shortest(seq1, seq2):
len_seq1 = len(seq1)
len_seq2 = len(seq2)
nxt_seq1 = [[len_seq1 + 1 for _ in range(2)] for _ in range(len_seq1 + 2)]
nxt_seq2 = [[len_seq2 + 1 for _ in range(2)] for _ in range(len_seq2 + 2)]
set_nxt(seq1, nxt_seq1)
set_nxt(seq2, nxt_seq2)
INF = 2 * max(len_seq1, len_seq2)
dp = [[INF for _ in range(len_seq2 + 2)] for _ in range(len_seq1 + 2)]
dp[len_seq1 + 1][len_seq2 + 1] = 0
for i in range( len_seq1 + 1, -1, -1):
for j in range(len_seq2 + 1, -1, -1):
for k in range(2):
if dp[nxt_seq1[i][k]][nxt_seq2[j][k]] < INF:
dp[i][j] = min(dp[i][j], dp[nxt_seq1[i][k]][nxt_seq2[j][k]] + 1);
res = ""
i = 0
j = 0
while i <= len_seq1 or j <= len_seq2:
for k in range(2):
if (dp[i][j] == dp[nxt_seq1[i][k]][nxt_seq2[j][k]] + 1):
i = nxt_seq1[i][k]
j = nxt_seq2[j][k]
res += str(k)
break;
return res
I am not going to work it through in detail, but the idea of this solution is to create a 2-D array of every combinations of positions in the one array and the other. It then populates this array with information about the shortest sequences that it finds that force you that far.
Just constructing that array takes space (and therefore time) O(len(seq1) * len(seq2)). Filling it in takes a similar time.
This is done with lots of bit twiddling that I don't want to track.
I have another approach that is clearer to me that usually takes less space and less time, but in the worst case could be as bad. But I have not coded it up.
UPDATE:
Here is is all coded up. With poor choices of variable names. Sorry about that.
# A trivial data class to hold a linked list for the candidate subsequences
# along with information about they match in the two sequences.
import collections
SubSeqLinkedList = collections.namedtuple('SubSeqLinkedList', 'value pos1 pos2 tail')
# This finds the position after the first match. No match is treated as off the end of seq.
def find_position_after_first_match (seq, start, value):
while start < len(seq) and seq[start] != value:
start += 1
return start+1
def make_longer_subsequence (subseq, value, seq1, seq2):
pos1 = find_position_after_first_match(seq1, subseq.pos1, value)
pos2 = find_position_after_first_match(seq2, subseq.pos2, value)
gotcha = SubSeqLinkedList(value=value, pos1=pos1, pos2=pos2, tail=subseq)
return gotcha
def minimal_nonsubseq (seq1, seq2):
# We start with one candidate for how to start the subsequence
# Namely an empty subsequence. Length 0, matches before the first character.
candidates = [SubSeqLinkedList(value=None, pos1=0, pos2=0, tail=None)]
# Now we try to replace candidates with longer maximal ones - nothing of
# the same length is better at going farther in both sequences.
# We keep this list ordered by descending how far it goes in sequence1.
while candidates[0].pos1 <= len(seq1) or candidates[0].pos2 <= len(seq2):
new_candidates = []
for candidate in candidates:
candidate1 = make_longer_subsequence(candidate, '0', seq1, seq2)
candidate2 = make_longer_subsequence(candidate, '1', seq1, seq2)
if candidate1.pos1 < candidate2.pos1:
# swap them.
candidate1, candidate2 = candidate2, candidate1
for c in (candidate1, candidate2):
if 0 == len(new_candidates):
new_candidates.append(c)
elif new_candidates[-1].pos1 <= c.pos1 and new_candidates[-1].pos2 <= c.pos2:
# We have found strictly better.
new_candidates[-1] = c
elif new_candidates[-1].pos2 < c.pos2:
# Note, by construction we cannot be shorter in pos1.
new_candidates.append(c)
# And now we throw away the ones we don't want.
# Those that are on their way to a solution will be captured in the linked list.
candidates = new_candidates
answer = candidates[0]
r_seq = [] # This winds up reversed.
while answer.value is not None:
r_seq.append(answer.value)
answer = answer.tail
return ''.join(reversed(r_seq))
print(minimal_nonsubseq('011', '1101'))
I am trying to return the length of a common substring between two strings. I'm very well aware of the DP solution, however I want to be able to solve this recursively just for practice.
I have the solution to find the longest common subsequence...
def get_substring(str1, str2, i, j):
if i == 0 or j == 0:
return
elif str1[i-1] == str2[j-1]:
return 1 + get_substring(str1, str2, i-1, j-1)
else:
return max(get_substring(str1, str2, i, j-1), get_substring(str1, str2, j-1, i))
However, I need the longest common substring, not the longest common sequence of letters. I tried altering my code in a couple of ways, one being changing the base case to...
if i == 0 or j == 0 or str1[i-1] != str2[j-1]:
return 0
But that did not work, and neither did any of my other attempts.
For example, for the following strings...
X = "AGGTAB"
Y = "BAGGTXAYB"
print(get_substring(X, Y, len(X), len(Y)))
The longest substring is AGGT.
My recursive skills are not the greatest, so if anybody can help me out that would be very helpful.
package algo.dynamic;
public class LongestCommonSubstring {
public static void main(String[] args) {
String a = "AGGTAB";
String b = "BAGGTXAYB";
int maxLcs = lcs(a.toCharArray(), b.toCharArray(), a.length(), b.length(), 0);
System.out.println(maxLcs);
}
private static int lcs(char[] a, char[] b, int i, int j, int count) {
if (i == 0 || j == 0)
return count;
if (a[i - 1] == b[j - 1]) {
count = lcs(a, b, i - 1, j - 1, count + 1);
}
count = Math.max(count, Math.max(lcs(a, b, i, j - 1, 0), lcs(a, b, i - 1, j, 0)));
return count;
}
}
You need to recurse on each separately. Which is easier to do if you have multiple recursive functions.
def longest_common_substr_at_both_start (str1, str2):
if 0 == len(str1) or 0 == len(str2) or str1[0] != str2[0]:
return ''
else:
return str1[0] + longest_common_substr_at_both_start(str1[1:], str2[1:])
def longest_common_substr_at_first_start (str1, str2):
if 0 == len(str2):
return ''
else:
answer1 = longest_common_substr_at_both_start (str1, str2)
answer2 = longest_common_substr_at_first_start (str1, str2[1:])
return answer2 if len(answer1) < len(answer2) else answer1
def longest_common_substr (str1, str2):
if 0 == len(str1):
return ''
else:
answer1 = longest_common_substr_at_first_start (str1, str2)
answer2 = longest_common_substr(str1[1:], str2)
return answer2 if len(answer1) < len(answer2) else answer1
print(longest_common_substr("BAGGTXAYB","AGGTAB") )
I am so sorry. I didn't have time to convert this into a recursive function. This was relatively straight forward to compose. If Python had a fold function a recursive function would be greatly eased. 90% of recursive functions are primitive. That's why fold is so valuable.
I hope the logic in this can help with a recursive version.
(x,y)= "AGGTAB","BAGGTXAYB"
xrng= range(len(x)) # it is used twice
np=[(a+1,a+2) for a in xrng] # make pairs of list index values to use
allx = [ x[i:i+b] for (a,b) in np for i in xrng[:-a]] # make list of len>1 combinations
[ c for i in range(len(y)) for c in allx if c == y[i:i+len(c)]] # run, matching x & y
...producing this list from which to take the longest of the matches
['AG', 'AGG', 'AGGT', 'GG', 'GGT', 'GT']
I didn't realize getting the longest match from the list would be a little involved.
ls= ['AG', 'AGG', 'AGGT', 'GG', 'GGT', 'GT']
ml= max([len(x) for x in ls])
ls[[a for (a,b) in zip(range(len(ls)),[len(x) for x in ls]) if b == ml][0]]
"AGGT"
I would like to find the shortest possible encoding for a string in the following form:
abbcccc = a2b4c
[NOTE: this greedy algorithm does not guarantee shortest solution]
By remembering all previous occurrences of a character it is straight forward to find the first occurrence of a repeating string (minimal end index including all repetitions = maximal remaining string after all repetitions) and replace it with a RLE (Python3 code):
def singleRLE_v1(s):
occ = dict() # for each character remember all previous indices of occurrences
for idx,c in enumerate(s):
if not c in occ: occ[c] = []
for c_occ in occ[c]:
s_c = s[c_occ:idx]
i = 1
while s[idx+(i-1)*len(s_c) : idx+i*len(s_c)] == s_c:
i += 1
if i > 1:
rle_pars = ('(',')') if len(s_c) > 1 else ('','')
rle = ('%d'%i) + rle_pars[0] + s_c + rle_pars[1]
s_RLE = s[:c_occ] + rle + s[idx+(i-1)*len(s_c):]
return s_RLE
occ[c].append(idx)
return s # no repeating substring found
To make it robust for iterative application we have to exclude a few cases where a RLE may not be applied (e.g. '11' or '))'), also we have to make sure the RLE is not making the string longer (which can happen with a substring of two characters occurring twice as in 'abab'):
def singleRLE(s):
"find first occurrence of a repeating substring and replace it with RLE"
occ = dict() # for each character remember all previous indices of occurrences
for idx,c in enumerate(s):
if idx>0 and s[idx-1] in '0123456789': continue # no RLE for e.g. '11' or other parts of previous inserted RLE
if c == ')': continue # no RLE for '))...)'
if not c in occ: occ[c] = []
for c_occ in occ[c]:
s_c = s[c_occ:idx]
i = 1
while s[idx+(i-1)*len(s_c) : idx+i*len(s_c)] == s_c:
i += 1
if i > 1:
print("found %d*'%s'" % (i,s_c))
rle_pars = ('(',')') if len(s_c) > 1 else ('','')
rle = ('%d'%i) + rle_pars[0] + s_c + rle_pars[1]
if len(rle) <= i*len(s_c): # in case of a tie prefer RLE
s_RLE = s[:c_occ] + rle + s[idx+(i-1)*len(s_c):]
return s_RLE
occ[c].append(idx)
return s # no repeating substring found
Now we can safely call singleRLE on the previous output as long as we find a repeating string:
def iterativeRLE(s):
s_RLE = singleRLE(s)
while s != s_RLE:
print(s_RLE)
s, s_RLE = s_RLE, singleRLE(s_RLE)
return s_RLE
With the above inserted print statements we get e.g. the following trace and result:
>>> iterativeRLE('xyabcdefdefabcdefdef')
found 2*'def'
xyabc2(def)abcdefdef
found 2*'def'
xyabc2(def)abc2(def)
found 2*'abc2(def)'
xy2(abc2(def))
'xy2(abc2(def))'
But this greedy algorithm fails for this input:
>>> iterativeRLE('abaaabaaabaa')
found 3*'a'
ab3abaaabaa
found 3*'a'
ab3ab3abaa
found 2*'b3a'
a2(b3a)baa
found 2*'a'
a2(b3a)b2a
'a2(b3a)b2a'
whereas one of the shortest solutions is 3(ab2a).
Since a greedy algorithm does not work, some search is necessary. Here is a depth first search with some pruning (if in a branch the first idx0 characters of the string are not touched, to not try to find a repeating substring within these characters; also if replacing multiple occurrences of a substring do this for all consecutive occurrencies):
def isRLE(s):
"is this a well nested RLE? (only well nested RLEs can be further nested)"
nestCnt = 0
for c in s:
if c == '(':
nestCnt += 1
elif c == ')':
if nestCnt == 0:
return False
nestCnt -= 1
return nestCnt == 0
def singleRLE_gen(s,idx0=0):
"find all occurrences of a repeating substring with first repetition not ending before index idx0 and replace each with RLE"
print("looking for repeated substrings in '%s', first rep. not ending before index %d" % (s,idx0))
occ = dict() # for each character remember all previous indices of occurrences
for idx,c in enumerate(s):
if idx>0 and s[idx-1] in '0123456789': continue # sub-RLE cannot start after number
if not c in occ: occ[c] = []
for c_occ in occ[c]:
s_c = s[c_occ:idx]
if not isRLE(s_c): continue # avoid RLEs for e.g. '))...)'
if idx+len(s_c) < idx0: continue # pruning: this substring has been tried before
if c_occ-len(s_c) >= 0 and s[c_occ-len(s_c):c_occ] == s_c: continue # pruning: always take all repetitions
i = 1
while s[idx+(i-1)*len(s_c) : idx+i*len(s_c)] == s_c:
i += 1
if i > 1:
rle_pars = ('(',')') if len(s_c) > 1 else ('','')
rle = ('%d'%i) + rle_pars[0] + s_c + rle_pars[1]
if len(rle) <= i*len(s_c): # in case of a tie prefer RLE
s_RLE = s[:c_occ] + rle + s[idx+(i-1)*len(s_c):]
#print(" replacing %d*'%s' -> %s" % (i,s_c,s_RLE))
yield s_RLE,c_occ
occ[c].append(idx)
def iterativeRLE_depthFirstSearch(s):
shortestRLE = s
candidatesRLE = [(s,0)]
while len(candidatesRLE) > 0:
candidateRLE,idx0 = candidatesRLE.pop(0)
for rle,idx in singleRLE_gen(candidateRLE,idx0):
if len(rle) <= len(shortestRLE):
shortestRLE = rle
print("new optimum: '%s'" % shortestRLE)
candidatesRLE.append((rle,idx))
return shortestRLE
Sample output:
>>> iterativeRLE_depthFirstSearch('tctttttttttttcttttttttttctttttttttttct')
looking for repeated substrings in 'tctttttttttttcttttttttttctttttttttttct', first rep. not ending before index 0
new optimum: 'tc11tcttttttttttctttttttttttct'
new optimum: '2(tctttttttttt)ctttttttttttct'
new optimum: 'tctttttttttttc2(ttttttttttct)'
looking for repeated substrings in 'tc11tcttttttttttctttttttttttct', first rep. not ending before index 2
new optimum: 'tc11tc10tctttttttttttct'
new optimum: 'tc11t2(ctttttttttt)tct'
new optimum: 'tc11tc2(ttttttttttct)'
looking for repeated substrings in 'tc5(tt)tcttttttttttctttttttttttct', first rep. not ending before index 2
...
new optimum: '2(tctttttttttt)c11tct'
...
new optimum: 'tc11tc10tc11tct'
...
new optimum: 'tc11t2(c10t)tct'
looking for repeated substrings in 'tc11tc2(ttttttttttct)', first rep. not ending before index 6
new optimum: 'tc11tc2(10tct)'
...
new optimum: '2(tc10t)c11tct'
...
'2(tc10t)c11tct'
Following is my C++ implementation to do it in-place with O(n) time complexity and O(1) space complexity.
class Solution {
public:
int compress(vector<char>& chars) {
int n = (int)chars.size();
if(chars.empty()) return 0;
int left = 0, right = 0, currCharIndx = left;
while(right < n) {
if(chars[currCharIndx] != chars[right]) {
int len = right - currCharIndx;
chars[left++] = chars[currCharIndx];
if(len > 1) {
string freq = to_string(len);
for(int i = 0; i < (int)freq.length(); i++) {
chars[left++] = freq[i];
}
}
currCharIndx = right;
}
right++;
}
int len = right - currCharIndx;
chars[left++] = chars[currCharIndx];
if(len > 1) {
string freq = to_string(len);
for(int i = 0; i < freq.length(); i++) {
chars[left++] = freq[i];
}
}
return left;
}
};
You need to keep track of three pointers - right is to iterate, currCharIndx is to keep track the first position of current character and left is to keep track the write position of the compressed string.
Given a mapping:
A: 1
B: 2
C: 3
...
...
...
Z: 26
Find all possible ways a number can be represented. E.g. For an input: "121", we can represent it as:
ABA [using: 1 2 1]
LA [using: 12 1]
AU [using: 1 21]
I tried thinking about using some sort of a dynamic programming approach, but I am not sure how to proceed. I was asked this question in a technical interview.
Here is a solution I could think of, please let me know if this looks good:
A[i]: Total number of ways to represent the sub-array number[0..i-1] using the integer to alphabet mapping.
Solution [am I missing something?]:
A[0] = 1 // there is only 1 way to represent the subarray consisting of only 1 number
for(i = 1:A.size):
A[i] = A[i-1]
if(input[i-1]*10 + input[i] < 26):
A[i] += 1
end
end
print A[A.size-1]
To just get the count, the dynamic programming approach is pretty straight-forward:
A[0] = 1
for i = 1:n
A[i] = 0
if input[i-1] > 0 // avoid 0
A[i] += A[i-1];
if i > 1 && // avoid index-out-of-bounds on i = 1
10 <= (10*input[i-2] + input[i-1]) <= 26 // check that number is 10-26
A[i] += A[i-2];
If you instead want to list all representations, dynamic programming isn't particularly well-suited for this, you're better off with a simple recursive algorithm.
First off, we need to find an intuitive way to enumerate all the possibilities. My simple construction, is given below.
let us assume a simple way to represent your integer in string format.
a1 a2 a3 a4 ....an, for instance in 121 a1 -> 1 a2 -> 2, a3 -> 1
Now,
We need to find out number of possibilities of placing a + sign in between two characters. + is to mean characters concatenation here.
a1 - a2 - a3 - .... - an, - shows the places where '+' can be placed. So, number of positions is n - 1, where n is the string length.
Assume a position may or may not have a + symbol shall be represented as a bit.
So, this boils down to how many different bit strings are possible with the length of n-1, which is clearly 2^(n-1). Now in order to enumerate the possibilities go through every bit string and place right + signs in respective positions to get every representations,
For your example, 121
Four bit strings are possible 00 01 10 11
1 2 1
1 2 + 1
1 + 2 1
1 + 2 + 1
And if you see a character followed by a +, just add the next char with the current one and do it sequentially to get the representation,
x + y z a + b + c d
would be (x+y) z (a+b+c) d
Hope it helps.
And you will have to take care of edge cases where the size of some integer > 26, of course.
I think, recursive traverse through all possible combinations would do just fine:
mapping = {"1":"A", "2":"B", "3":"C", "4":"D", "5":"E", "6":"F", "7":"G",
"8":"H", "9":"I", "10":"J",
"11":"K", "12":"L", "13":"M", "14":"N", "15":"O", "16":"P",
"17":"Q", "18":"R", "19":"S", "20":"T", "21":"U", "22":"V", "23":"W",
"24":"A", "25":"Y", "26":"Z"}
def represent(A, B):
if A == B == '':
return [""]
ret = []
if A in mapping:
ret += [mapping[A] + r for r in represent(B, '')]
if len(A) > 1:
ret += represent(A[:-1], A[-1]+B)
return ret
print represent("121", "")
Assuming you only need to count the number of combinations.
Assuming 0 followed by an integer in [1,9] is not a valid concatenation, then a brute-force strategy would be:
Count(s,n)
x=0
if (s[n-1] is valid)
x=Count(s,n-1)
y=0
if (s[n-2] concat s[n-1] is valid)
y=Count(s,n-2)
return x+y
A better strategy would be to use divide-and-conquer:
Count(s,start,n)
if (len is even)
{
//split s into equal left and right part, total count is left count multiply right count
x=Count(s,start,n/2) + Count(s,start+n/2,n/2);
y=0;
if (s[start+len/2-1] concat s[start+len/2] is valid)
{
//if middle two charaters concatenation is valid
//count left of the middle two characters
//count right of the middle two characters
//multiply the two counts and add to existing count
y=Count(s,start,len/2-1)*Count(s,start+len/2+1,len/2-1);
}
return x+y;
}
else
{
//there are three cases here:
//case 1: if middle character is valid,
//then count everything to the left of the middle character,
//count everything to the right of the middle character,
//multiply the two, assign to x
x=...
//case 2: if middle character concatenates the one to the left is valid,
//then count everything to the left of these two characters
//count everything to the right of these two characters
//multiply the two, assign to y
y=...
//case 3: if middle character concatenates the one to the right is valid,
//then count everything to the left of these two characters
//count everything to the right of these two characters
//multiply the two, assign to z
z=...
return x+y+z;
}
The brute-force solution has time complexity of T(n)=T(n-1)+T(n-2)+O(1) which is exponential.
The divide-and-conquer solution has time complexity of T(n)=3T(n/2)+O(1) which is O(n**lg3).
Hope this is correct.
Something like this?
Haskell code:
import qualified Data.Map as M
import Data.Maybe (fromJust)
combs str = f str [] where
charMap = M.fromList $ zip (map show [1..]) ['A'..'Z']
f [] result = [reverse result]
f (x:xs) result
| null xs =
case M.lookup [x] charMap of
Nothing -> ["The character " ++ [x] ++ " is not in the map."]
Just a -> [reverse $ a:result]
| otherwise =
case M.lookup [x,head xs] charMap of
Just a -> f (tail xs) (a:result)
++ (f xs ((fromJust $ M.lookup [x] charMap):result))
Nothing -> case M.lookup [x] charMap of
Nothing -> ["The character " ++ [x]
++ " is not in the map."]
Just a -> f xs (a:result)
Output:
*Main> combs "121"
["LA","AU","ABA"]
Here is the solution based on my discussion here:
private static int decoder2(int[] input) {
int[] A = new int[input.length + 1];
A[0] = 1;
for(int i=1; i<input.length+1; i++) {
A[i] = 0;
if(input[i-1] > 0) {
A[i] += A[i-1];
}
if (i > 1 && (10*input[i-2] + input[i-1]) <= 26) {
A[i] += A[i-2];
}
System.out.println(A[i]);
}
return A[input.length];
}
Just us breadth-first search.
for instance 121
Start from the first integer,
consider 1 integer character first, map 1 to a, leave 21
then 2 integer character map 12 to L leave 1.
This problem can be done in o(fib(n+2)) time with a standard DP algorithm.
We have exactly n sub problems and button up we can solve each problem with size i in o(fib(i)) time.
Summing the series gives fib (n+2).
If you consider the question carefully you see that it is a Fibonacci series.
I took a standard Fibonacci code and just changed it to fit our conditions.
The space is obviously bound to the size of all solutions o(fib(n)).
Consider this pseudo code:
Map<Integer, String> mapping = new HashMap<Integer, String>();
List<String > iterative_fib_sequence(string input) {
int length = input.length;
if (length <= 1)
{
if (length==0)
{
return "";
}
else//input is a-j
{
return mapping.get(input);
}
}
List<String> b = new List<String>();
List<String> a = new List<String>(mapping.get(input.substring(0,0));
List<String> c = new List<String>();
for (int i = 1; i < length; ++i)
{
int dig2Prefix = input.substring(i-1, i); //Get a letter with 2 digit (k-z)
if (mapping.contains(dig2Prefix))
{
String word2Prefix = mapping.get(dig2Prefix);
foreach (String s in b)
{
c.Add(s.append(word2Prefix));
}
}
int dig1Prefix = input.substring(i, i); //Get a letter with 1 digit (a-j)
String word1Prefix = mapping.get(dig1Prefix);
foreach (String s in a)
{
c.Add(s.append(word1Prefix));
}
b = a;
a = c;
c = new List<String>();
}
return a;
}
old question but adding an answer so that one can find help
It took me some time to understand the solution to this problem – I refer accepted answer and #Karthikeyan's answer and the solution from geeksforgeeks and written my own code as below:
To understand my code first understand below examples:
we know, decodings([1, 2]) are "AB" or "L" and so decoding_counts([1, 2]) == 2
And, decodings([1, 2, 1]) are "ABA", "AU", "LA" and so decoding_counts([1, 2, 1]) == 3
using the above two examples let's evaluate decodings([1, 2, 1, 4]):
case:- "taking next digit as single digit"
taking 4 as single digit to decode to letter 'D', we get decodings([1, 2, 1, 4]) == decoding_counts([1, 2, 1]) because [1, 2, 1, 4] will be decode as "ABAD", "AUD", "LAD"
case:- "combining next digit with the previous digit"
combining 4 with previous 1 as 14 as a single to decode to letter N, we get decodings([1, 2, 1, 4]) == decoding_counts([1, 2]) because [1, 2, 1, 4] will be decode as "ABN" or "LN"
Below is my Python code, read comments
def decoding_counts(digits):
# defininig count as, counts[i] -> decoding_counts(digits[: i+1])
counts = [0] * len(digits)
counts[0] = 1
for i in xrange(1, len(digits)):
# case:- "taking next digit as single digit"
if digits[i] != 0: # `0` do not have mapping to any letter
counts[i] = counts[i -1]
# case:- "combining next digit with the previous digit"
combine = 10 * digits[i - 1] + digits[i]
if 10 <= combine <= 26: # two digits mappings
counts[i] += (1 if i < 2 else counts[i-2])
return counts[-1]
for digits in "13", "121", "1214", "1234121":
print digits, "-->", decoding_counts(map(int, digits))
outputs:
13 --> 2
121 --> 3
1214 --> 5
1234121 --> 9
note: I assumed that input digits do not start with 0 and only consists of 0-9 and have a sufficent length
For Swift, this is what I came up with. Basically, I converted the string into an array and goes through it, adding a space into different positions of this array, then appending them to another array for the second part, which should be easy after this is done.
//test case
let input = [1,2,2,1]
func combination(_ input: String) {
var arr = Array(input)
var possible = [String]()
//... means inclusive range
for i in 2...arr.count {
var temp = arr
//basically goes through it backwards so
// adding the space doesn't mess up the index
for j in (1..<i).reversed() {
temp.insert(" ", at: j)
possible.append(String(temp))
}
}
print(possible)
}
combination(input)
//prints:
//["1 221", "12 21", "1 2 21", "122 1", "12 2 1", "1 2 2 1"]
def stringCombinations(digits, i=0, s=''):
if i == len(digits):
print(s)
return
alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
total = 0
for j in range(i, min(i + 1, len(digits) - 1) + 1):
total = (total * 10) + digits[j]
if 0 < total <= 26:
stringCombinations(digits, j + 1, s + alphabet[total - 1])
if __name__ == '__main__':
digits = list()
n = input()
n.split()
d = list(n)
for i in d:
i = int(i)
digits.append(i)
print(digits)
stringCombinations(digits)
I have always wanted to do this but every time I start thinking about the problem it blows my mind because of its exponential nature.
The problem solver I want to be able to understand and code is for the countdown maths problem:
Given set of number X1 to X5 calculate how they can be combined using mathematical operations to make Y.
You can apply multiplication, division, addition and subtraction.
So how does 1,3,7,6,8,3 make 348?
Answer: (((8 * 7) + 3) -1) *6 = 348.
How to write an algorithm that can solve this problem? Where do you begin when trying to solve a problem like this? What important considerations do you have to think about when designing such an algorithm?
Very quick and dirty solution in Java:
public class JavaApplication1
{
public static void main(String[] args)
{
List<Integer> list = Arrays.asList(1, 3, 7, 6, 8, 3);
for (Integer integer : list) {
List<Integer> runList = new ArrayList<>(list);
runList.remove(integer);
Result result = getOperations(runList, integer, 348);
if (result.success) {
System.out.println(integer + result.output);
return;
}
}
}
public static class Result
{
public String output;
public boolean success;
}
public static Result getOperations(List<Integer> numbers, int midNumber, int target)
{
Result midResult = new Result();
if (midNumber == target) {
midResult.success = true;
midResult.output = "";
return midResult;
}
for (Integer number : numbers) {
List<Integer> newList = new ArrayList<Integer>(numbers);
newList.remove(number);
if (newList.isEmpty()) {
if (midNumber - number == target) {
midResult.success = true;
midResult.output = "-" + number;
return midResult;
}
if (midNumber + number == target) {
midResult.success = true;
midResult.output = "+" + number;
return midResult;
}
if (midNumber * number == target) {
midResult.success = true;
midResult.output = "*" + number;
return midResult;
}
if (midNumber / number == target) {
midResult.success = true;
midResult.output = "/" + number;
return midResult;
}
midResult.success = false;
midResult.output = "f" + number;
return midResult;
} else {
midResult = getOperations(newList, midNumber - number, target);
if (midResult.success) {
midResult.output = "-" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber + number, target);
if (midResult.success) {
midResult.output = "+" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber * number, target);
if (midResult.success) {
midResult.output = "*" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber / number, target);
if (midResult.success) {
midResult.output = "/" + number + midResult.output;
return midResult
}
}
}
return midResult;
}
}
UPDATE
It's basically just simple brute force algorithm with exponential complexity.
However you can gain some improvemens by leveraging some heuristic function which will help you to order sequence of numbers or(and) operations you will process in each level of getOperatiosn() function recursion.
Example of such heuristic function is for example difference between mid result and total target result.
This way however only best-case and average-case complexities get improved. Worst case complexity remains untouched.
Worst case complexity can be improved by some kind of branch cutting. I'm not sure if it's possible in this case.
Sure it's exponential but it's tiny so a good (enough) naive implementation would be a good start. I suggest you drop the usual infix notation with bracketing, and use postfix, it's easier to program. You can always prettify the outputs as a separate stage.
Start by listing and evaluating all the (valid) sequences of numbers and operators. For example (in postfix):
1 3 7 6 8 3 + + + + + -> 28
1 3 7 6 8 3 + + + + - -> 26
My Java is laughable, I don't come here to be laughed at so I'll leave coding this up to you.
To all the smart people reading this: yes, I know that for even a small problem like this there are smarter approaches which are likely to be faster, I'm just pointing OP towards an initial working solution. Someone else can write the answer with the smarter solution(s).
So, to answer your questions:
I begin with an algorithm that I think will lead me quickly to a working solution. In this case the obvious (to me) choice is exhaustive enumeration and testing of all possible calculations.
If the obvious algorithm looks unappealing for performance reasons I'll start thinking more deeply about it, recalling other algorithms that I know about which are likely to deliver better performance. I may start coding one of those first instead.
If I stick with the exhaustive algorithm and find that the run-time is, in practice, too long, then I might go back to the previous step and code again. But it has to be worth my while, there's a cost/benefit assessment to be made -- as long as my code can outperform Rachel Riley I'd be satisfied.
Important considerations include my time vs computer time, mine costs a helluva lot more.
A working solution in c++11 below.
The basic idea is to use a stack-based evaluation (see RPN) and convert the viable solutions to infix notation for display purposes only.
If we have N input digits, we'll use (N-1) operators, as each operator is binary.
First we create valid permutations of operands and operators (the selector_ array). A valid permutation is one that can be evaluated without stack underflow and which ends with exactly one value (the result) on the stack. Thus 1 1 + is valid, but 1 + 1 is not.
We test each such operand-operator permutation with every permutation of operands (the values_ array) and every combination of operators (the ops_ array). Matching results are pretty-printed.
Arguments are taken from command line as [-s] <target> <digit>[ <digit>...]. The -s switch prevents exhaustive search, only the first matching result is printed.
(use ./mathpuzzle 348 1 3 7 6 8 3 to get the answer for the original question)
This solution doesn't allow concatenating the input digits to form numbers. That could be added as an additional outer loop.
The working code can be downloaded from here. (Note: I updated that code with support for concatenating input digits to form a solution)
See code comments for additional explanation.
#include <iostream>
#include <vector>
#include <algorithm>
#include <stack>
#include <iterator>
#include <string>
namespace {
enum class Op {
Add,
Sub,
Mul,
Div,
};
const std::size_t NumOps = static_cast<std::size_t>(Op::Div) + 1;
const Op FirstOp = Op::Add;
using Number = int;
class Evaluator {
std::vector<Number> values_; // stores our digits/number we can use
std::vector<Op> ops_; // stores the operators
std::vector<char> selector_; // used to select digit (0) or operator (1) when evaluating. should be std::vector<bool>, but that's broken
template <typename T>
using Stack = std::stack<T, std::vector<T>>;
// checks if a given number/operator order can be evaluated or not
bool isSelectorValid() const {
int numValues = 0;
for (auto s : selector_) {
if (s) {
if (--numValues <= 0) {
return false;
}
}
else {
++numValues;
}
}
return (numValues == 1);
}
// evaluates the current values_ and ops_ based on selector_
Number eval(Stack<Number> &stack) const {
auto vi = values_.cbegin();
auto oi = ops_.cbegin();
for (auto s : selector_) {
if (!s) {
stack.push(*(vi++));
continue;
}
Number top = stack.top();
stack.pop();
switch (*(oi++)) {
case Op::Add:
stack.top() += top;
break;
case Op::Sub:
stack.top() -= top;
break;
case Op::Mul:
stack.top() *= top;
break;
case Op::Div:
if (top == 0) {
return std::numeric_limits<Number>::max();
}
Number res = stack.top() / top;
if (res * top != stack.top()) {
return std::numeric_limits<Number>::max();
}
stack.top() = res;
break;
}
}
Number res = stack.top();
stack.pop();
return res;
}
bool nextValuesPermutation() {
return std::next_permutation(values_.begin(), values_.end());
}
bool nextOps() {
for (auto i = ops_.rbegin(), end = ops_.rend(); i != end; ++i) {
std::size_t next = static_cast<std::size_t>(*i) + 1;
if (next < NumOps) {
*i = static_cast<Op>(next);
return true;
}
*i = FirstOp;
}
return false;
}
bool nextSelectorPermutation() {
// the start permutation is always valid
do {
if (!std::next_permutation(selector_.begin(), selector_.end())) {
return false;
}
} while (!isSelectorValid());
return true;
}
static std::string buildExpr(const std::string& left, char op, const std::string &right) {
return std::string("(") + left + ' ' + op + ' ' + right + ')';
}
std::string toString() const {
Stack<std::string> stack;
auto vi = values_.cbegin();
auto oi = ops_.cbegin();
for (auto s : selector_) {
if (!s) {
stack.push(std::to_string(*(vi++)));
continue;
}
std::string top = stack.top();
stack.pop();
switch (*(oi++)) {
case Op::Add:
stack.top() = buildExpr(stack.top(), '+', top);
break;
case Op::Sub:
stack.top() = buildExpr(stack.top(), '-', top);
break;
case Op::Mul:
stack.top() = buildExpr(stack.top(), '*', top);
break;
case Op::Div:
stack.top() = buildExpr(stack.top(), '/', top);
break;
}
}
return stack.top();
}
public:
Evaluator(const std::vector<Number>& values) :
values_(values),
ops_(values.size() - 1, FirstOp),
selector_(2 * values.size() - 1, 0) {
std::fill(selector_.begin() + values_.size(), selector_.end(), 1);
std::sort(values_.begin(), values_.end());
}
// check for solutions
// 1) we create valid permutations of our selector_ array (eg: "1 1 + 1 +",
// "1 1 1 + +", but skip "1 + 1 1 +" as that cannot be evaluated
// 2) for each evaluation order, we permutate our values
// 3) for each value permutation we check with each combination of
// operators
//
// In the first version I used a local stack in eval() (see toString()) but
// it turned out to be a performance bottleneck, so now I use a cached
// stack. Reusing the stack gives an order of magnitude speed-up (from
// 4.3sec to 0.7sec) due to avoiding repeated allocations. Using
// std::vector as a backing store also gives a slight performance boost
// over the default std::deque.
std::size_t check(Number target, bool singleResult = false) {
Stack<Number> stack;
std::size_t res = 0;
do {
do {
do {
Number value = eval(stack);
if (value == target) {
++res;
std::cout << target << " = " << toString() << "\n";
if (singleResult) {
return res;
}
}
} while (nextOps());
} while (nextValuesPermutation());
} while (nextSelectorPermutation());
return res;
}
};
} // namespace
int main(int argc, const char **argv) {
int i = 1;
bool singleResult = false;
if (argc > 1 && std::string("-s") == argv[1]) {
singleResult = true;
++i;
}
if (argc < i + 2) {
std::cerr << argv[0] << " [-s] <target> <digit>[ <digit>]...\n";
std::exit(1);
}
Number target = std::stoi(argv[i]);
std::vector<Number> values;
while (++i < argc) {
values.push_back(std::stoi(argv[i]));
}
Evaluator evaluator{values};
std::size_t res = evaluator.check(target, singleResult);
if (!singleResult) {
std::cout << "Number of solutions: " << res << "\n";
}
return 0;
}
Input is obviously a set of digits and operators: D={1,3,3,6,7,8,3} and Op={+,-,*,/}. The most straight forward algorithm would be a brute force solver, which enumerates all possible combinations of these sets. Where the elements of set Op can be used as often as wanted, but elements from set D are used exactly once. Pseudo code:
D={1,3,3,6,7,8,3}
Op={+,-,*,/}
Solution=348
for each permutation D_ of D:
for each binary tree T with D_ as its leafs:
for each sequence of operators Op_ from Op with length |D_|-1:
label each inner tree node with operators from Op_
result = compute T using infix traversal
if result==Solution
return T
return nil
Other than that: read jedrus07's and HPM's answers.
By far the easiest approach is to intelligently brute force it. There is only a finite amount of expressions you can build out of 6 numbers and 4 operators, simply go through all of them.
How many? Since you don't have to use all numbers and may use the same operator multiple times, This problem is equivalent to "how many labeled strictly binary trees (aka full binary trees) can you make with at most 6 leaves, and four possible labels for each non-leaf node?".
The amount of full binary trees with n leaves is equal to catalan(n-1). You can see this as follows:
Every full binary tree with n leaves has n-1 internal nodes and corresponds to a non-full binary tree with n-1 nodes in a unique way (just delete all the leaves from the full one to get it). There happen to be catalan(n) possible binary trees with n nodes, so we can say that a strictly binary tree with n leaves has catalan(n-1) possible different structures.
There are 4 possible operators for each non-leaf node: 4^(n-1) possibilities
The leaves can be numbered in n! * (6 choose (n-1)) different ways. (Divide this by k! for each number that occurs k times, or just make sure all numbers are different)
So for 6 different numbers and 4 possible operators you get Sum(n=1...6) [ Catalan(n-1) * 6!/(6-n)! * 4^(n-1) ] possible expressions for a total of 33,665,406. Not a lot.
How do you enumerate these trees?
Given a collection of all trees with n-1 or less nodes, you can create all trees with n nodes by systematically pairing all of the n-1 trees with the empty tree, all n-2 trees with the 1 node tree, all n-3 trees with all 2 node tree etc. and using them as the left and right sub trees of a newly formed tree.
So starting with an empty set you first generate the tree that has just a root node, then from a new root you can use that either as a left or right sub tree which yields the two trees that look like this: / and . And so on.
You can turn them into a set of expressions on the fly (just loop over the operators and numbers) and evaluate them as you go until one yields the target number.
I've written my own countdown solver, in Python.
Here's the code; it is also available on GitHub:
#!/usr/bin/env python3
import sys
from itertools import combinations, product, zip_longest
from functools import lru_cache
assert sys.version_info >= (3, 6)
class Solutions:
def __init__(self, numbers):
self.all_numbers = numbers
self.size = len(numbers)
self.all_groups = self.unique_groups()
def unique_groups(self):
all_groups = {}
all_numbers, size = self.all_numbers, self.size
for m in range(1, size+1):
for numbers in combinations(all_numbers, m):
if numbers in all_groups:
continue
all_groups[numbers] = Group(numbers, all_groups)
return all_groups
def walk(self):
for group in self.all_groups.values():
yield from group.calculations
class Group:
def __init__(self, numbers, all_groups):
self.numbers = numbers
self.size = len(numbers)
self.partitions = list(self.partition_into_unique_pairs(all_groups))
self.calculations = list(self.perform_calculations())
def __repr__(self):
return str(self.numbers)
def partition_into_unique_pairs(self, all_groups):
# The pairs are unordered: a pair (a, b) is equivalent to (b, a).
# Therefore, for pairs of equal length only half of all combinations
# need to be generated to obtain all pairs; this is set by the limit.
if self.size == 1:
return
numbers, size = self.numbers, self.size
limits = (self.halfbinom(size, size//2), )
unique_numbers = set()
for m, limit in zip_longest(range((size+1)//2, size), limits):
for numbers1, numbers2 in self.paired_combinations(numbers, m, limit):
if numbers1 in unique_numbers:
continue
unique_numbers.add(numbers1)
group1, group2 = all_groups[numbers1], all_groups[numbers2]
yield (group1, group2)
def perform_calculations(self):
if self.size == 1:
yield Calculation.singleton(self.numbers[0])
return
for group1, group2 in self.partitions:
for calc1, calc2 in product(group1.calculations, group2.calculations):
yield from Calculation.generate(calc1, calc2)
#classmethod
def paired_combinations(cls, numbers, m, limit):
for cnt, numbers1 in enumerate(combinations(numbers, m), 1):
numbers2 = tuple(cls.filtering(numbers, numbers1))
yield (numbers1, numbers2)
if cnt == limit:
return
#staticmethod
def filtering(iterable, elements):
# filter elements out of an iterable, return the remaining elements
elems = iter(elements)
k = next(elems, None)
for n in iterable:
if n == k:
k = next(elems, None)
else:
yield n
#staticmethod
#lru_cache()
def halfbinom(n, k):
if n % 2 == 1:
return None
prod = 1
for m, l in zip(reversed(range(n+1-k, n+1)), range(1, k+1)):
prod = (prod*m)//l
return prod//2
class Calculation:
def __init__(self, expression, result, is_singleton=False):
self.expr = expression
self.result = result
self.is_singleton = is_singleton
def __repr__(self):
return self.expr
#classmethod
def singleton(cls, n):
return cls(f"{n}", n, is_singleton=True)
#classmethod
def generate(cls, calca, calcb):
if calca.result < calcb.result:
calca, calcb = calcb, calca
for result, op in cls.operations(calca.result, calcb.result):
expr1 = f"{calca.expr}" if calca.is_singleton else f"({calca.expr})"
expr2 = f"{calcb.expr}" if calcb.is_singleton else f"({calcb.expr})"
yield cls(f"{expr1} {op} {expr2}", result)
#staticmethod
def operations(x, y):
yield (x + y, '+')
if x > y: # exclude non-positive results
yield (x - y, '-')
if y > 1 and x > 1: # exclude trivial results
yield (x * y, 'x')
if y > 1 and x % y == 0: # exclude trivial and non-integer results
yield (x // y, '/')
def countdown_solver():
# input: target and numbers. If you want to play with more or less than
# 6 numbers, use the second version of 'unsorted_numbers'.
try:
target = int(sys.argv[1])
unsorted_numbers = (int(sys.argv[n+2]) for n in range(6)) # for 6 numbers
# unsorted_numbers = (int(n) for n in sys.argv[2:]) # for any numbers
numbers = tuple(sorted(unsorted_numbers, reverse=True))
except (IndexError, ValueError):
print("You must provide a target and numbers!")
return
solutions = Solutions(numbers)
smallest_difference = target
bestresults = []
for calculation in solutions.walk():
diff = abs(calculation.result - target)
if diff <= smallest_difference:
if diff < smallest_difference:
bestresults = [calculation]
smallest_difference = diff
else:
bestresults.append(calculation)
output(target, smallest_difference, bestresults)
def output(target, diff, results):
print(f"\nThe closest results differ from {target} by {diff}. They are:\n")
for calculation in results:
print(f"{calculation.result} = {calculation.expr}")
if __name__ == "__main__":
countdown_solver()
The algorithm works as follows:
The numbers are put into a tuple of length 6 in descending order. Then, all unique subgroups of lengths 1 to 6 are created, the smallest groups first.
Example: (75, 50, 5, 9, 1, 1) -> {(75), (50), (9), (5), (1), (75, 50), (75, 9), (75, 5), ..., (75, 50, 9, 5, 1, 1)}.
Next, the groups are organised into a hierarchical tree: every group is partitioned into all unique unordered pairs of its non-empty subgroups.
Example: (9, 5, 1, 1) -> [(9, 5, 1) + (1), (9, 1, 1) + (5), (5, 1, 1) + (9), (9, 5) + (1, 1), (9, 1) + (5, 1)].
Within each group of numbers, the calculations are performed and the results are stored. For groups of length 1, the result is simply the number itself. For larger groups, the calculations are carried out on every pair of subgroups: in each pair, all results of the first subgroup are combined with all results of the second subgroup using +, -, x and /, and the valid outcomes are stored.
Example: (75, 5) consists of the pair ((75), (5)). The result of (75) is 75; the result of (5) is 5; the results of (75, 5) are [75+5=80, 75-5=70, 75*5=375, 75/5=15].
In this manner, all results are generated, from the smallest groups to the largest. Finally, the algorithm iterates through all results and selects the ones that are the closest match to the target number.
For a group of m numbers, the maximum number of arithmetic computations is
comps[m] = 4*sum(binom(m, k)*comps[k]*comps[m-k]//(1 + (2*k)//m) for k in range(1, m//2+1))
For all groups of length 1 to 6, the maximum total number of computations is then
total = sum(binom(n, m)*comps[m] for m in range(1, n+1))
which is 1144386. In practice, it will be much less, because the algorithm reuses the results of duplicate groups, ignores trivial operations (adding 0, multiplying by 1, etc), and because the rules of the game dictate that intermediate results must be positive integers (which limits the use of the division operator).
I think, you need to strictly define the problem first. What you are allowed to do and what you are not. You can start by making it simple and only allowing multiplication, division, substraction and addition.
Now you know your problem space- set of inputs, set of available operations and desired input. If you have only 4 operations and x inputs, the number of combinations is less than:
The number of order in which you can carry out operations (x!) times the possible choices of operations on every step: 4^x. As you can see for 6 numbers it gives reasonable 2949120 operations. This means that this may be your limit for brute force algorithm.
Once you have brute force and you know it works, you can start improving your algorithm with some sort of A* algorithm which would require you to define heuristic functions.
In my opinion the best way to think about it is as the search problem. The main difficulty will be finding good heuristics, or ways to reduce your problem space (if you have numbers that do not add up to the answer, you will need at least one multiplication etc.). Start small, build on that and ask follow up questions once you have some code.
I wrote a terminal application to do this:
https://github.com/pg328/CountdownNumbersGame/tree/main
Inside, I've included an illustration of the calculation of the size of the solution space (it's n*((n-1)!^2)*(2^n-1), so: n=6 -> 2,764,800. I know, gross), and more importantly why that is. My implementation is there if you care to check it out, but in case you don't I'll explain here.
Essentially, at worst it is brute force because as far as I know it's impossible to determine whether any specific branch will result in a valid answer without explicitly checking. Having said that, the average case is some fraction of that; it's {that number} divided by the number of valid solutions (I tend to see around 1000 on my program, where 10 or so are unique and the rest are permutations fo those 10). If I handwaved a number, I'd say roughly 2,765 branches to check which takes like no time. (Yes, even in Python.)
TL;DR: Even though the solution space is huge and it takes a couple million operations to find all solutions, only one answer is needed. Best route is brute force til you find one and spit it out.
I wrote a slightly simpler version:
for every combination of 2 (distinct) elements from the list and combine them using +,-,*,/ (note that since a>b then only a-b is needed and only a/b if a%b=0)
if combination is target then record solution
recursively call on the reduced lists
import sys
def driver():
try:
target = int(sys.argv[1])
nums = list((int(sys.argv[i+2]) for i in range(6)))
except (IndexError, ValueError):
print("Provide a list of 7 numbers")
return
solutions = list()
solve(target, nums, list(), solutions)
unique = set()
final = list()
for s in solutions:
a = '-'.join(sorted(s))
if not a in unique:
unique.add(a)
final.append(s)
for s in final: #print them out
print(s)
def solve(target, nums, path, solutions):
if len(nums) == 1:
return
distinct = sorted(list(set(nums)), reverse = True)
rem1 = list(distinct)
for n1 in distinct: #reduce list by combining a pair
rem1.remove(n1)
for n2 in rem1:
rem2 = list(nums) # in case of duplicates we need to start with full list and take out the n1,n2 pair of elements
rem2.remove(n1)
rem2.remove(n2)
combine(target, solutions, path, rem2, n1, n2, '+')
combine(target, solutions, path, rem2, n1, n2, '-')
if n2 > 1:
combine(target, solutions, path, rem2, n1, n2, '*')
if not n1 % n2:
combine(target, solutions, path, rem2, n1, n2, '//')
def combine(target, solutions, path, rem2, n1, n2, symb):
lst = list(rem2)
ans = eval("{0}{2}{1}".format(n1, n2, symb))
newpath = path + ["{0}{3}{1}={2}".format(n1, n2, ans, symb[0])]
if ans == target:
solutions += [newpath]
else:
lst.append(ans)
solve(target, lst, newpath, solutions)
if __name__ == "__main__":
driver()