Passing const reference pointer fails to match method signature - c++11

The following code passes a const pointer reference to a size() helper function. It only works if I remove the const or the & reference operator from the helper function.
#include <iostream>
using namespace std;
template <typename T>
class Test {
public:
Test();
int size();
void insert(T);
private:
struct Node {
T value;
Node* left;
Node* right;
};
Node* root;
int size(const Node*& node);
};
template <typename T>
Test<T>::Test() { root = nullptr;}
template <typename T>
int Test<T>::size() {return size(root);}
template <typename T>
int Test<T>::size(const Node*& node) {
if (node != nullptr)
return 1 + size(node->left) + size(node->right);
return 0;
}
int main() {
Test<int> t;
cout << "Size: " << t.size() << endl;
}
I get the following compiler errors when I compile this code as C++11:
main.cpp:31:11: error: no matching member function for call to 'size'
return size(root);
^~~~
main.cpp:43:26: note: in instantiation of member function 'Test<int>::size' requested here
cout << "Size: " << t.size() << endl;
^
main.cpp:21:11: note: candidate function not viable: no known conversion from 'Test<int>::Node *' to 'const Test<int>::Node *&' for 1st argument
int size(const Node*& node);
^
main.cpp:10:11: note: candidate function not viable: requires 0 arguments, but 1 was provided
int size();
^
1 error generated.
However, if I simply remove the const or the reference operator (&) from the helper function that size() calls, it compiles and runs exactly as expected.
In other words, either of the following works:
int size(Node*& node);
template <typename T> int Test<T>::size(Node*& node)
int size(const Node* node);
template <typename T> int Test<T>::size(const Node* node)
But this does not:
int size(const Node*& node);
template <typename T> int Test<T>::size(const Node*& node)
The declaration and implementation seem identical in all three cases, so I am having a hard time figuring out why the case with the const reference fails.

If it were legal to pass a pointer to non-const object where a reference to pointer to const object is expected, then it would be possible to violate const correctness. Consider:
const int c = 42;
void f(const int*& p) {
// Make p point to c
p = &c;
}
int* q;
f(q); // hypothetical, doesn't compile
// Now q points to c
*q = 84; // oops, modifying a const object

Related

Composing boost::variant visitors for recursive variants

I have an application with several boost::variants which share many of the fields. I would like to be able to compose these visitors into visitors for "larger" variants without copying and pasting a bunch of code. It seems straightforward to do this for non-recursive variants, but once you have a recursive one, the self-references within the visitor (of course) point to the wrong class. To make this concrete (and cribbing from the boost::variant docs):
#include "boost/variant.hpp"
#include <iostream>
struct add;
struct sub;
template <typename OpTag> struct binop;
typedef boost::variant<
int
, boost::recursive_wrapper< binop<add> >
, boost::recursive_wrapper< binop<sub> >
> expression;
template <typename OpTag>
struct binop
{
expression left;
expression right;
binop( const expression & lhs, const expression & rhs )
: left(lhs), right(rhs)
{
}
};
// Add multiplication
struct mult;
typedef boost::variant<
int
, boost::recursive_wrapper< binop<add> >
, boost::recursive_wrapper< binop<sub> >
, boost::recursive_wrapper< binop<mult> >
> mult_expression;
class calculator : public boost::static_visitor<int>
{
public:
int operator()(int value) const
{
return value;
}
int operator()(const binop<add> & binary) const
{
return boost::apply_visitor( *this, binary.left )
+ boost::apply_visitor( *this, binary.right );
}
int operator()(const binop<sub> & binary) const
{
return boost::apply_visitor( *this, binary.left )
- boost::apply_visitor( *this, binary.right );
}
};
class mult_calculator : public boost::static_visitor<int>
{
public:
int operator()(int value) const
{
return value;
}
int operator()(const binop<add> & binary) const
{
return boost::apply_visitor( *this, binary.left )
+ boost::apply_visitor( *this, binary.right );
}
int operator()(const binop<sub> & binary) const
{
return boost::apply_visitor( *this, binary.left )
- boost::apply_visitor( *this, binary.right );
}
int operator()(const binop<mult> & binary) const
{
return boost::apply_visitor( *this, binary.left )
* boost::apply_visitor( *this, binary.right );
}
};
// I'd like something like this to compile
// class better_mult_calculator : public calculator
// {
// public:
// int operator()(const binop<mult> & binary) const
// {
// return boost::apply_visitor( *this, binary.left )
// * boost::apply_visitor( *this, binary.right );
// }
// };
int main(int argc, char **argv)
{
// result = ((7-3)+8) = 12
expression result(binop<add>(binop<sub>(7,3), 8));
assert( boost::apply_visitor(calculator(),result) == 12 );
std::cout << "Success add" << std::endl;
// result2 = ((7-3)+8)*2 = 12
mult_expression result2(binop<mult>(binop<add>(binop<sub>(7,3), 8),2));
assert( boost::apply_visitor(mult_calculator(),result2) == 24 );
std::cout << "Success mult" << std::endl;
}
I would really like something like that commented out better_mult_expression to compile (and work) but it doesn't -- because the this pointers within the base calculator visitor don't reference mult_expression, but expression.
Does anyone have suggestions for overcoming this or am I just barking down the wrong tree?
Firstly, I'd suggest the variant to include all possible node types, not distinguishing between mult and expression. This distinction makes no sense at the AST level, only at a parser stage (if you implement operator precedence in recursive/PEG fashion).
Other than that, here's a few observations:
if you encapsulate the apply_visitor dispatch into your evaluation functor you can reduce the code duplication by a big factor
your real question seems not to be about composing variants, but composing visitors, more specifically, by inheritance.
You can use using to pull inherited overloads into scope for overload resolution, so this might be the most direct answer:
Live On Coliru
struct better_mult_calculator : calculator {
using calculator::operator();
auto operator()(const binop<mult>& binary) const
{
return boost::apply_visitor(*this, binary.left) *
boost::apply_visitor(*this, binary.right);
}
};
IMPROVING!
Starting from that listing let's shave off some noise!
remove unncessary AST distinction (-40 lines, down to 55 lines of code)
generalize the operations; the <functional> header comes standard with these:
namespace AST {
template <typename> struct binop;
using add = binop<std::plus<>>;
using sub = binop<std::minus<>>;
using mult = binop<std::multiplies<>>;
using expr = boost::variant<int,
recursive_wrapper<add>,
recursive_wrapper<sub>,
recursive_wrapper<mult>>;
template <typename> struct binop { expr left, right; };
} // namespace AST
Now the entire calculator can be:
struct calculator : boost::static_visitor<int> {
int operator()(int value) const { return value; }
template <typename Op>
int operator()(AST::binop<Op> const& binary) const {
return Op{}(boost::apply_visitor(*this, binary.left),
boost::apply_visitor(*this, binary.right));
}
};
Here your variant can add arbitrary operations without even needing to touch the calculator.
Live Demo, 43 Lines Of Code
Like I mentioned starting off, encapsulate visitation!
struct Calculator {
template <typename... T> int operator()(boost::variant<T...> const& v) const {
return boost::apply_visitor(*this, v);
}
template <typename T>
int operator()(T const& lit) const { return lit; }
template <typename Op>
int operator()(AST::binop<Op> const& bin) const {
return Op{}(operator()(bin.left), operator()(bin.right));
}
};
Now you can just call your calculator, like intended:
Calculator calc;
auto result1 = calc(e1);
It will work when you extend the variant with operatios or even other literal types (like e.g. double). It will even work, regardless of whether you pass it an incompatible variant type that holds a subset of the node types.
To finish that off for maintainability/readability, I'd suggest making operator() only a dispatch function:
Full Demo
Live On Coliru
#include <boost/variant.hpp>
#include <iostream>
namespace AST {
using boost::recursive_wrapper;
template <typename> struct binop;
using add = binop<std::plus<>>;
using sub = binop<std::minus<>>;
using mult = binop<std::multiplies<>>;
using expr = boost::variant<int,
recursive_wrapper<add>,
recursive_wrapper<sub>,
recursive_wrapper<mult>>;
template <typename> struct binop { expr left, right; };
} // namespace AST
struct Calculator {
auto operator()(auto const& v) const { return call(v); }
private:
template <typename... T> int call(boost::variant<T...> const& v) const {
return boost::apply_visitor(*this, v);
}
template <typename T>
int call(T const& lit) const { return lit; }
template <typename Op>
int call(AST::binop<Op> const& bin) const {
return Op{}(call(bin.left), call(bin.right));
}
};
int main()
{
using namespace AST;
std::cout << std::boolalpha;
auto sub_expr = add{sub{7, 3}, 8};
expr e1 = sub_expr;
expr e2 = mult{sub_expr, 2};
Calculator calc;
auto result1 = calc(e1);
std::cout << "result1: " << result1 << " Success? " << (12 == result1) << "\n";
// result2 = ((7-3)+8)*2 = 12
auto result2 = calc(e2);
std::cout << "result2: " << result2 << " Success? " << (24 == result2) << "\n";
}
Still prints
result1: 12 Success? true
result2: 24 Success? true

Type mismatch of pointer to template member function

I am following this code snippet which makes it easier to pass a member function to an interface expecting a C-style callback (that is, the interface expects a function pointer to the callback, and a void* pointer to user data which will in turn be passed to the callback). Effectively I want to convert Helper::M to Helper::V below.
I am trying to modify the snippet to automatically deduce the template parameters. Here is my current attempt.
#include <iostream>
template <typename R, typename T, typename... Args>
struct Helper {
using V = R (*)(void*, Args...);
using M = R (T::*)(Args...);
template <M m>
static R Fn(void* data, Args... args) {
return (static_cast<T*>(data)->*m)(std::forward<Args...>(args...));
}
};
template <typename R, typename T, typename... Args>
typename Helper<R, T, Args...>::V Cast(R (T::*m)(Args...)) {
return Helper<R, T, Args...>::template Fn<m>;
}
int CIntf(void* data, int (*f)(void*, int)) { return f(data, 1); }
struct UserData {
int x;
int Add(int y) { return x + y; }
};
int main(int argv, char** argc) {
UserData data = {4};
// Explicit parameters; works.
std::cout << CIntf(&data, Helper<int, UserData, int>::Fn<&UserData::Add>)
<< "\n";
// Deduced parameters; fails.
std::cout << CIntf(&data, Cast(&UserData::Add)) << "\n";
return 0;
}
I tried to compile with gcc -std=c++11 -lstdc++. The explicit parameters method works fine, but the deduced parameters method gives the following error:
tmp.cc: In instantiation of ‘typename Helper<R, T, Args>::V Cast(R (T::*)(Args ...)) [with R = int; T = UserData; Args = {int}; typename Helper<R, T, Args>::V = int (*)(void*, int)]’:
tmp.cc:30:58: required from here
tmp.cc:15:42: error: no matches converting function ‘Fn’ to type ‘using V = int (*)(void*, int) {aka int (*)(void*, int)}’
return Helper<R, T, Args...>::template Fn<m>;
^~~~~
tmp.cc:8:12: note: candidate is: template<int (UserData::* m)(int)> static R Helper<R, T, Args>::Fn(void*, Args ...) [with R (T::* m)(Args ...) = m; R = int; T = UserData; Args = {int}]
static R Fn(void* data, Args... args) {
Note that it correctly deduced the template parameters, but failed to convert Helper<int, UserData, int>::Fn<m> to int (*)(void*, int); why? This same conversion succeeded in the explicit case (unless m is somehow different from &UserData::Add).
Unfortunately you'll have to use a macro for this:
#define makeFunc(method) &Helper<decltype(method)>::Fn<method>
And redefine your helper like this for it to work:
template <typename T>
struct Helper;
template <typename R, typename T, typename... Args>
struct Helper<R(T::*)(Args...)>
The reason why you can't use deduction for this, is that deduction only works on function arguments which are run-time values. And you need to use a method's address as template argument which should be a compile-time value.
So when you do this:
return Helper<R, T, Args...>::template Fn<m>;
you are passing a run-time value m as a template argument which is impossible.
For reference, here is the complete code using the macro. Also note the use of std::forward in the original code was incorrect for multiple arguments (see this answer).
#include <iostream>
#include <utility>
template <typename T>
struct Helper;
template <typename R, typename T, typename... Args>
struct Helper<R (T::*)(Args...)> {
template <R (T::*m)(Args...)>
static R Fn(void* t, Args... args) {
return (static_cast<T*>(t)->*m)(std::forward<Args>(args)...);
}
};
#define VOID_CAST(m) &Helper<decltype(m)>::Fn<m>
struct UserData {
int x;
int Add1(int y) { return x + y; }
int Add2(int y, int z) { return x + y + z; }
};
int Call1(void* data, int (*f)(void*, int)) { return (*f)(data, 1); }
int Call2(void* data, int (*f)(void*, int, int)) { return (*f)(data, 1, 2); }
int main() {
UserData data = {4};
std::cout << Call1(&data, VOID_CAST(&UserData::Add1)) << "\n";
std::cout << Call2(&data, VOID_CAST(&UserData::Add2)) << "\n";
return 0;
}

Recursive indexing for tensor in C++11

I have a tensor classes of rank N which wrap data stored in an array. For example, a rank-3 tensor would have dimensions (d0,d1,d2) and a unique element would be accessed with the multi-index (i0,i1,i2) from the underlying array of length d0*d1*d2. If d0=d1=d2=10, i0=1, i1=2, i2=3, then element 123 of the array would be accessed.
I've implemented a recursively defined class which computes single array index from the multi-index as follows:
template<size_t N>
class TensorIndex : TensorIndex<N-1> {
private:
size_t d;
public:
template<typename...Ds>
TensorIndex( size_t d0, Ds...ds ) : TensorIndex<N-1>( ds... ), d(d0) {}
template<typename...Is>
size_t index( size_t i0, Is...is ) {
return i0+d*TensorIndex<N-1>::index(is...);
}
};
template<>
struct TensorIndex<1> {
TensorIndex( size_t ) {}
size_t index( size_t i ) { return i; }
};
Which reverses the desired order.
TensorIndex<3> g(10,10,10);
std::cout << g.index(1,2,3) << std::endl;
outputs 321. What would be a simple way to reverse the order of the arguments for the constructor and index functions?
Edit:
I tried implementing using the suggested approach of reversing the variadic arguments, but this was suboptimal as it required reversing the arguments for both index and the constructor and the necessary helper functions for these two cases would appear slightly different. The initializer list answer looks more straightforward.
No need of recursion nor to reverse, you can use initializer-list to call an evaluation function that accumulates index from left to right. The function object called in the initalizer-list should have a non-void return type :
#include <cstddef>
#include <iostream>
using namespace std;
template<size_t N>
class TensorIndex {
public:
template<typename... Args>
TensorIndex(Args... args) : dims{static_cast<size_t>(args)...}
{
static_assert(sizeof...(Args) == N,
"incorrect number of arguments for TensorIndex constructor");
}
template<typename... Args>
size_t index(Args... args) {
static_assert(sizeof...(Args) == N,
"incorrect number of arguments for TensorIndex::index()");
IndexEval eval{dims};
Pass pass{eval(args)...}; // evaluate from left to right : initializer-list
return eval.get_res();
}
private:
const size_t dims[N];
class IndexEval {
size_t k = 0;
size_t res = 0;
const size_t* dims;
public:
IndexEval(const size_t* dims) : dims{dims} {}
size_t operator()(size_t i) {
return res = res * dims[k++] + i;
}
size_t get_res() const { return res; }
};
struct Pass {
template<typename... Args> Pass(Args...) {}
};
};
int main()
{
TensorIndex<3> g(10, 10, 10);
cout << g.index(1, 2, 3) << endl;
}

clang - how to declare a static const int in header file?

Given the following template in a header file, and a couple of specializations:
template<typename> class A {
static const int value;
};
template<> const int A<int>::value = 1;
template<> const int A<long>::value = 2;
and building with clang-5, it results in errors for each source unit that included the file, all complaining about multiple definitions for A<int>::value and A<long>::value.
At first, I thought that maybe the template specializations needed to be put in a specific translation unit, but on checking the spec, this apparently should be allowed, because the value is a constant integer.
Am I doing something else wrong?
EDIT: if I move the definition into a single translation unit, then I can no longer use the value of A<T>::value in the context of a const int (eg, where its value is being used to calculate the value of another const assignment) , so the value really needs to be in a header.
In c++11 you maybe can go that way:
template<typename> class B {
public:
static const int value = 1;
};
template<> class B<long> {
public:
static const int value = 2;
};
template<typename T> const int B<T>::value;
If you only want to specialize the value var, you can use CRTP for that.
From C++17 you can make your definition inline:
template<> inline const int A<int>::value = 1;
template<> inline const int A<long>::value = 2;
Also from c++17 you can remove the 'template const int B::value;' for constexpr:
template<typename> class C {
public:
static constexpr int value = 1;
};
template<> class C<long> {
public:
static constexpr int value = 2;
};
// no need anymore for: template<typename T> const int C<T>::value;
And another solution for c++11 can be to use a inline method instead of inline vars which are allowed from c++17:
template<typename T> class D {
public:
static constexpr int GetVal() { return 0; }
static const int value = GetVal();
};
template <> inline constexpr int D<int>::GetVal() { return 1; }
template <> inline constexpr int D<long>::GetVal() { return 2; }
template< typename T>
const int D<T>::value;
In addition to your last edit:
To use your values also in other dependent definitions it seems to be the most readable version if you use the inline constexpr methods.
Edit: "Special" version for clang, because as OP tells us, clang complains with "specialization happening after instantiation". I don't know if clang or gcc is wrong in that place...
template<typename T> class D {
public:
static constexpr int GetVal();
static const int value;
};
template <> inline constexpr int D<int>::GetVal() { return 1; }
template <> inline constexpr int D<long>::GetVal() { return 2; }
template <typename T> const int D<T>::value = D<T>::GetVal();
int main()
{
std::cout << D<int>::value << std::endl;
std::cout << D<long>::value << std::endl;
}
I told already that CRTP is possible if not the complete class should be redefined. I checked the code on clang and it compiles without any warning or error, because OP comments that he did not understand how to use it:
template<typename> class E_Impl {
public:
static const int value = 1;
};
template<> class E_Impl<long> {
public:
static const int value = 2;
};
template<typename T> const int E_Impl<T>::value;
template < typename T>
class E : public E_Impl<T>
{
// rest of class definition goes here and must not specialized
// and the values can be used here!
public:
void Check()
{
std::cout << this->value << std::endl;
}
};
int main()
{
E<long>().Check();
std::cout << E<long>::value << std::endl;
E<int>().Check();
std::cout << E<int>::value << std::endl;
}

Identify pointers in a tuple c++11

I need to convert a tuple to a byte array. This is the code I use to convert to byte array:
template< typename T > std::array< byte, sizeof(T) > get_bytes( const T& multiKeys )
{
std::array< byte, sizeof(T) > byteArr ;
const byte* start = reinterpret_cast< const byte* >(std::addressof(multiKeys) ) ;
const byte* end = start + sizeof(T);
std::copy(start, end, std::begin(byteArr));
return byteArr;
}
Here is how I call it:
void foo(T... keyTypes){
keys = std::tuple<T... >(keyTypes...);
const auto bytes = get_bytes(keys);
}
I need to augment this code such that when a pointer is a part of the tuple, I dereference it to it's value and then pass the new tuple, without any pointers, to the get_bytes() function. How do I detect the presence of a pointer in the tuple? I can then iterate through the tuple and dereference it with:
std::cout << *std::get<2>(keys) << std::endl;
Add a trivial overload: T get_bytes(T const* t) { return getBytes(*t); }.
That would be easy with C++14 :
#include <iostream>
#include <tuple>
#include <utility>
template <class T> decltype(auto) get_dereferenced_value(T &&value) {
return std::forward<T>(value);
}
template <class T> decltype(auto) get_dereferenced_value(T *value) {
return *value;
}
template <class Tuple, class Indexes> struct get_dereferenced_tuple_impl;
template <class... Args, size_t... Index>
struct get_dereferenced_tuple_impl<std::tuple<Args...>,
std::integer_sequence<size_t, Index...>> {
decltype(auto) operator()(std::tuple<Args...> const &originalTuple) {
return std::make_tuple(
get_dereferenced_value(std::get<Index>(originalTuple))...);
}
};
template <class Tuple>
decltype(auto) get_dereferenced_tuple(Tuple const &tupleValue) {
return get_dereferenced_tuple_impl<
Tuple,
std::make_integer_sequence<size_t, std::tuple_size<Tuple>::value>>{}(
tupleValue);
}
int main() {
char c = 'i';
std::tuple<char, char *> t{'h', &c};
auto t2 = get_dereferenced_tuple(t);
std::cout << std::get<0>(t2) << std::get<1>(t2) << "\n";
return 0;
}
If you cannot use C++14, then you would have to write more verbose decltype expressions, as well as include an implementation of std::(make_)integer_sequence.
This has a drawback though : copies will be made before copying the bytes. A tuple of references is not a good idea. The most performant version would be a get_bytes able to serialize the entire mixed tuple directly.

Resources