So, I've written a program that reads input from a .txt file in the form of 2 integers and a list of integers: the first integer is the length of the list, the second is the number of different elements, and the list is the list in question.
I then want to create a list of frequencies for the elements, like so:
List = [1, 2, 3, 1, 3, 2, 3, 1],
FreqList = [3, 2, 3].
Here is my code:
% Create random list
createList(List) :-
length(List, 10),
maplist(random(0,4), List).
% Count the frequency of an element:
countElement(_, [], 0) :- !.
countElement(_, [], _).
countElement(Element, [Element|Tail], Counter) :-
countElement(Element, Tail, Counter2),
Counter is Counter2 + 1.
countElement(Element, [_|Tail], Counter) :-
countElement(Element, Tail, Counter).
% Create frequency list:
createFreqList(_, _, Numbers, [], CurrentNumber) :-
Numbers = CurrentNumber.
createFreqList(List, Length, Numbers, [Head|Tail], CurrentNumber) :-
Numbers \= CurrentNumber,
countElement(CurrentNumber, List, Head),
CurrentNumber2 is CurrentNumber + 1,
createFreqList(List, Length, Numbers, Tail, CurrentNumber2).
frequency(List, FreqList) :-
createList(List),
Numbers2 is 4,
createFreqList(List, 10, Numbers2, FreqList, 1).
So, on first execution the program runs ok, and it outputs the correct frequency list. However, if I input ';', instead of giving me 'false' it runs again, outputing a wrong frequency list, and that just repeats for as long as I press ';'.
I would probably do something like this:
frequencies(Xs, Fs) :-
msort(Xs,Sorted),
glob( Sorted, [], Fs ).
glob( [], Fs, Fs ).
glob( [X|Xs], [X:N|Ts], Fs ) :-
!,
N1 is N+1,
glob(Xs, [X:N1|Ts], Fs ).
glob( [X|Xs], Ts, Fs ) :-
glob(Xs, [X:1|Ts], Fs).
That used msort/2 to put the list in sequence.The resulting list is in descending sequence by key value — [ 3:123, 2:25, 1:321 ].
You could also do something like this:
frequencies(Xs, Fs) :- frequencies( Xs, [], Fs ).
frequencies( [], Fs, Fs ).
frequencies( [X|Xs], Ts, Fs ) :-
tote( X, Ts, T1),
frequencies(Xs, T1, Fs).
tote( X, Ts, Fs ) :-
append( Pfx, [X:N|Sfx], Ts),
!,
N1 is N+1,
append( Pfx, [X:N1|Sfx], Fs).
tote( X, Ts, [X:1|Ts] ).
I suspect that a one-time sort of the original list is probably going to be faster than repeated scans of the accumulator list.
Just in case you don't want to reinvent the wheel.
There is a quasi standard called library(aggregate). But library(aggregate) can be also implemented on top of the ISO core standard bagof/3, which also gets you there:
Welcome to SWI-Prolog (threaded, 64 bits, version 8.1.6)
?- aggregate(count, member(X,[1, 2, 3, 1, 3, 2, 3, 1]), R).
X = 1,
R = 3 ;
X = R, R = 2 ;
X = R, R = 3.
?- bagof(hit, member(X,[1, 2, 3, 1, 3, 2, 3, 1]), L), length(L, R).
X = 1,
L = [hit, hit, hit],
R = 3 ;
X = R, R = 2,
L = [hit, hit] ;
X = R, R = 3,
L = [hit, hit, hit].
Or in another Prolog system:
Jekejeke Prolog 3, Runtime Library 1.3.7 (May 23, 2019)
?- use_module(library(advanced/aggregate)).
% 3 consults and 0 unloads in 110 ms.
Yes
?- use_module(library(basic/lists)).
% 0 consults and 0 unloads in 0 ms.
Yes
?- aggregate(count, member(X,[1, 2, 3, 1, 3, 2, 3, 1]), R).
X = 1,
R = 3 ;
X = 2,
R = 2 ;
X = 3,
R = 3
?- bagof(hit, member(X,[1, 2, 3, 1, 3, 2, 3, 1]), L), length(L, R).
X = 1,
L = [hit,hit,hit],
R = 3 ;
X = 2,
L = [hit,hit],
R = 2 ;
X = 3,
L = [hit,hit,hit],
R = 3
Related
I have my head stuck in this exercise in prolog, I ve been trying to do it on my own but it just won't work. Example: ?-succesor([1,9,9],X) -> X = [2,0,0]. Had tried first to reverse the list and increment it with 1 and then do a if %10 = 0 the next element should be incremented too. Thing is that I m too used with programming syntax and I can't get my head wrapped around this.Any help would be appreciated.
I have done this so far, but the output is false.
%[1,9,9] -> 199 +1 -> 200;
numbers_atoms([],[]).
numbers_atoms([X|Y],[C|K]) :-
atom_number(C, X),
numbers_atoms(Y,K).
%([1,2,3],X)
digits_number(Digits, Number) :-
numbers_atoms(Digits, Atoms),
number_codes(Number, Atoms).
number_tolist( 0, [] ).
number_tolist(N,[A|As]) :-
N1 is floor(N/10),
A is N mod 10,
number_tolist(N1, As).
addOne([X],[Y]):-
digits_number(X,Y1), %[1,9,9] -> 199
Y1 is Y1+1, % 199 -> 200
number_tolist(Y1,[Y]), % 200 -> [2,0,0]
!.
You can solve this problem similarly to how you would solve it manually: traverse the list of digits until you reach the rightmost digit; increment that digit and compute the carry-on digit, which must be recursively propagated to the left. At the end, prepend the carry-on digit if it is equal to 1 (otherwise, ignore it).
% successor(+Input, -Output)
successor([X0|Xs], L) :-
successor(Xs, X0, C, Ys),
( C = 1 % carry-on
-> L = [C|Ys]
; L = Ys ).
% helper predicate
successor([], X, C, [Y]) :-
Z is X + 1,
Y is Z mod 10,
C is Z div 10. % carry-on
successor([X1|Xs], X0, C, [Y|Ys]) :-
successor(Xs, X1, C0, Ys),
Z is X0 + C0,
Y is Z mod 10,
C is Z div 10. % carry-on
Examples:
?- successor([1,9,9], A).
A = [2, 0, 0].
?- successor([2,7],A), successor(A,B), successor(B,C), successor(C,D).
A = [2, 8],
B = [2, 9],
C = [3, 0],
D = [3, 1].
?- successor([7,9,9,8], A), successor(A, B).
A = [7, 9, 9, 9],
B = [8, 0, 0, 0].
?- successor([9,9,9,9], A), successor(A, B).
A = [1, 0, 0, 0, 0],
B = [1, 0, 0, 0, 1].
Here's a version which doesn't use is and can work both ways:
successor(ListIn, ListOut) :-
reverse(ListIn, ListInRev),
ripple_inc(ListInRev, ListOutRev),
reverse(ListOutRev, ListOut).
ripple_inc([], [1]).
ripple_inc([0|T], [1|T]).
ripple_inc([1|T], [2|T]).
ripple_inc([2|T], [3|T]).
ripple_inc([3|T], [4|T]).
ripple_inc([4|T], [5|T]).
ripple_inc([5|T], [6|T]).
ripple_inc([6|T], [7|T]).
ripple_inc([7|T], [8|T]).
ripple_inc([8|T], [9|T]).
ripple_inc([9|T], [0|Tnext]) :-
ripple_inc(T, Tnext).
e.g.
?- successor([1,9,9], X).
X = [2, 0, 0]
?- successor([1,9,9], [2,0,0]).
true
?- successor(X, [2,0,0]).
X = [1, 9, 9]
although it's nicely deterministic when run 'forwards', it's annoying that if run 'backwards' it finds an answer, then leaves a choicepoint and then infinite loops if that choicepoint is retried. I think what causes that is starting from the higher number then reverse(ListIn, ListInRev) has nothing to work on and starts generating longer and longer lists both filled with empty variables and never ends.
I can constrain the input and output to be same_length/2 but I can't think of a way to constrain them to be the same length or ListOut is one item longer ([9,9,9] -> [1,0,0,0]).
This answer tries to improve the previous answer by #TessellatingHacker, like so:
successor(ListIn, ListOut) :-
no_longer_than(ListIn, ListOut), % weaker than same_length/2
reverse(ListIn, ListInRev),
ripple_inc(ListInRev, ListOutRev),
reverse(ListOutRev, ListOut).
The definition of no_longer_than/2 follows. Note the similarity to same_length/2:
no_longer_than([],_). % same_length([],[]).
no_longer_than([_|Xs],[_|Ys]) :- % same_length([_|Xs],[_|Ys]) :-
no_longer_than(Xs,Ys). % same_length(Xs,Ys).
The following sample queries still succeed deterministically, as they did before:
?- successor([1,9,9], X).
X = [2,0,0].
?- successor([1,9,9], [2,0,0]).
true.
The "run backwards" use of successor/2 now also terminates universally:
?- successor(X, [2,0,0]).
X = [1,9,9]
; false.
I want to exclude multiple rotations/mirrors of a list in my solutions of the predicate. I'll give an example of what I understand are rotations/mirrors of a list:
[1,2,3,4,5]
[2,3,4,5,1]
[3,4,5,1,2]
[5,4,3,2,1]
I have to find a predicate that delivers unique sequence of numbers from 1 to N, according to some constraints. I already figured out how to compute the right sequence but I can't find out how to exclude all the rotations and mirrors of 1 list. Is there an easy way to do this?
Edit:
Full predicate. clock_round(N,Sum,Yf) finds a sequence of the numbers 1 to N in such a way that no triplet of adjacent numbers has a sum higher than Sum.
clock_round(N,Sum,Yf) :-
generate(1,N,Xs),
permutation(Xs,Ys),
nth0(0,Ys,Elem1),
nth0(1,Ys,Elem2),
append(Ys,[Elem1,Elem2],Ym),
safe(Ym,Sum),
remove_duplicates(Ym,Yf).
remove_duplicates([],[]).
remove_duplicates([H | T], List) :-
member(H, T),
remove_duplicates( T, List).
remove_duplicates([H | T], [H|T1]) :-
\+member(H, T),
remove_duplicates( T, T1).
% generate/3 generates list [1..N]
generate(N,N,[N]).
generate(M,N,[M|List]) :-
M < N, M1 is M + 1,
generate(M1,N,List).
% permutation/2
permutation([],[]).
permutation(List,[Elem|Perm]) :-
select(Elem,List,Rest),
permutation(Rest,Perm).
safe([],_).
safe(List,Sum) :-
( length(List,3),
nth0(0,List,Elem1),
nth0(1,List,Elem2),
nth0(2,List,Elem3),
Elem1 + Elem2 + Elem3 =< Sum
; [_|RestList] = List, % first to avoid redundant retries
nth0(0,List,Elem1),
nth0(1,List,Elem2),
nth0(2,List,Elem3),
Elem1 + Elem2 + Elem3 =< Sum,
safe(RestList,Sum)
).
So what you want is to identify certain symmetries. At first glance you would have to compare all possible solutions with such. That is, in addition of paying the cost of generating all possible solutions you will then compare them to each other which will cost you a further square of the solutions.
On the other hand, think of it: You are searching for certain permutations of the numbers 1..n, and thus you could fix one number to a certain position. Let's fix 1 to the first position, that is not a big harm, as you can generate the remaining n-1 solutions by rotation.
And then mirroring. What happens, if one mirrors (or reverses) a sequence? Another sequence which is a solution is produced. The open question now, how can we exclude certain solutions and be sure that they will show up upon mirroring? Like: the number after 1 is larger than the number before 1.
At the end, rethink what we did: First all solutions were generated and only thereafter some were removed. What a waste! Why not avoid to produce useless solutions first?
And even further at the end, all of this can be expressed much more efficiently with library(clpfd).
:- use_module(library(clpfd)).
clock_round_(N,Sum,Xs) :-
N #=< Sum, Sum #=< 3*N -2-1,
length(Xs, N),
Xs = [D,E|_],
D = 1, append(_,[L],Xs), E #> L, % symmetry breaking
Xs ins 1..N,
all_different(Xs),
append(Xs,[D,E],Ys),
allsums(Ys, Sum).
allsums([], _).
allsums([_], _).
allsums([_,_], _).
allsums([A,B,C|Xs], S) :-
A+B+C #=< S,
allsums([B,C|Xs], S).
?- clock_round_(N, Sum, Xs), labeling([], [Sum|Xs]).
N = 3, Sum = 6, Xs = [1,3,2]
; N = 4, Sum = 9, Xs = [1,3,4,2]
; N = 4, Sum = 9, Xs = [1,4,2,3]
; N = 4, Sum = 9, Xs = [1,4,3,2]
; N = 5, Sum = 10, Xs = [1,5,2,3,4]
; ... .
Here is a possibility do do that :
is_rotation(L1, L2) :-
append(H1, H2, L1),
append(H2, H1, L2).
is_mirror(L1, L2) :-
reverse(L1,L2).
my_filter([H|Tail], [H|Out]):-
exclude(is_rotation(H), Tail, Out_1),
exclude(is_mirror(H), Out_1, Out).
For example
?- L = [[1,2,3,4,5],[2,3,4,5,1],[3,4,5,1,2],[5,4,3,2,1], [1,3,2,4,5]],my_filter(L, Out).
L = [[1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2], [5, 4, 3, 2, 1], [1, 3, 2, 4|...]],
Out = [[1, 2, 3, 4, 5], [1, 3, 2, 4, 5]].
Examples: ([1,2,3,7,6,9], 6). should print True, as 1+2+3=6.
([1,2,3,7,6,9], 5). should print False as there are no three numbers whose sum is 5.
([],N) where N is equal to anything should be false.
Need to use only these constructs:
A single clause must be defined (no more than one clause is allowed).
Only the following is permitted:
+, ,, ;, ., !, :-, is, Lists -- Head and Tail syntax for list types, Variables.
I have done a basic coding as per my understanding.
findVal([Q|X],A) :-
[W|X1]=X,
[Y|X2]=X,
% Trying to append the values.
append([Q],X1,X2),
% finding sum.
RES is Q+W+Y,
% verify here.
(not(RES=A)->
% finding the values.
(findVal(X2,A=)->
true
;
(findVal(X,A)->
% return result.
true
;
% return value.
false))
;
% return result.
true
).
It does not seem to run throwing the following error.
ERROR:
Undefined procedure: findVal/2 (DWIM could not correct goal)
Can someone help with this?
You can make use of append/3 [swi-doc] here to pick an element from a list, and get access to the rest of the elements (the elements after that element). By applying this technique three times, we thus obtain three items from the list. We can then match the sum of these elements:
sublist(L1, S) :-
append(_, [S1|L2], L1),
append(_, [S2|L3], L2),
append(_, [S3|_], L3),
S is S1 + S2 + S3.
Well, you can iterate (via backtracking) over all the sublists of 3 elements from the input list and see which ones sum 3:
sublist([], []).
sublist([H|T], [H|S]) :- sublist(T, S).
sublist([_|T], S) :- sublist(T, S).
:- length(L, 3), sublist([1,2,3,7,6,9], L), sum_list(L, 6).
I'm giving a partial solution here because it is an interesting problem even though the constraints are ridiculous.
First, I want something like select/3, except that will give me the tail of the list rather than the list without the item:
select_from(X, [X|R], R).
select_from(X, [_|T], R) :- select_from(X, T, R).
I want the tail, rather than just member/2, so I can recursively ask for items from the list without getting duplicates.
?- select_from(X, [1,2,3,4,5], R).
X = 1,
R = [2, 3, 4, 5] ;
X = 2,
R = [3, 4, 5] ;
X = 3,
R = [4, 5] ;
X = 4,
R = [5] ;
X = 5,
R = [] ;
false.
Yeah, this is good. Now I want to build a thing to give me N elements from a list. Again, I want combinations, because I don't want unnecessary duplicates if I can avoid it:
select_n_from(1, L, [X]) :- select_from(X, L, _).
select_n_from(N, L, [X|R]) :-
N > 1,
succ(N0, N),
select_from(X, L, Next),
select_n_from(N0, Next, R).
So the idea here is simple. If N = 1, then just do select_from/3 and give me a singleton list. If N > 1, then get one item using select_from/3 and then recur with N-1. This should give me all the possible combinations of items from this list, without giving me a bunch of repetitions I don't care about because addition is commutative and associative:
?- select_n_from(3, [1,2,3,4,5], R).
R = [1, 2, 3] ;
R = [1, 2, 4] ;
R = [1, 2, 5] ;
R = [1, 3, 4] ;
R = [1, 3, 5] ;
R = [1, 4, 5] ;
R = [2, 3, 4] ;
R = [2, 3, 5] ;
R = [2, 4, 5] ;
R = [3, 4, 5] ;
false.
We're basically one step away now from the result, which is this:
sublist(List, N) :-
select_n_from(3, List, R),
sumlist(R, N).
I'm hardcoding 3 here because of your problem, but I wanted a general solution. Using it:
?- sublist([1,2,3,4,5], N).
N = 6 ;
N = 7 ;
N = 8 ;
N = 8 ;
N = 9 ;
N = 10 ;
N = 9 ;
N = 10 ;
N = 11 ;
N = 12 ;
false.
You can also check:
?- sublist([1,2,3,4,5], 6).
true ;
false.
?- sublist([1,2,3,4,5], 5).
false.
?- sublist([1,2,3,4,5], 8).
true ;
true ;
false.
New users of Prolog will be annoyed that you get multiple answers here, but knowing that there are multiple ways to get 8 is probably interesting.
I want to merge list of digits to number.
[1,2,3] -> 123
My predicate:
merge([X], X).
merge([H|T], X) :-
merge(T, X1),
X is X1 + H * 10.
But now I get:
[1,2,3] -> 33
Another way to do it would be to multiply what you've handled so far by ten, but you need an accumulator value.
merge(Digits, Result) :- merge(Digits, 0, Result).
merge([X|Xs], Prefix, Result) :-
Prefix1 is Prefix * 10 + X,
merge(Xs, Prefix1, Result).
merge([], Result, Result).
The math is off. You're rule says you have to multiply H by 10. But really H needs to be multiplied by a power of 10 equivalent to its position in the list. That would be * 100 for the 1, and * 10 for the 2. What you get now is: 10*1 + 10*2 + 3 which is 33. The problem is that your recursive clause doesn't know what numeric "place" the digit is in.
If you structure the code differently, and use an accumulator, you can simplify the problem. Also, by using CLP(FD) and applying some constraints on the digits, you can have a more general solution.
:- use_module(library(clpfd)).
digits_number(Digits, X) :-
digits_number(Digits, 0, X).
digits_number([], S, S).
digits_number([D|Ds], S, X) :-
D in 0..9,
S1 #= S*10 + D,
digits_number(Ds, S1, X).
?- digits_number([1,2,3], X).
X = 123
?- digits_number(L, 123).
L = [1, 2, 3] ;
L = [0, 1, 2, 3] ;
L = [0, 0, 1, 2, 3] ;
L = [0, 0, 0, 1, 2, 3] ;
L = [0, 0, 0, 0, 1, 2, 3]
...
?-
I am working on a prolog program, but I have no idea to finish the program. Here is the requirement.
The program allows multiple fact, however, the length of list in each fact must equals
Example 1
%fact
f(first, [1, 6, 10]).
f(second, [7, 3, 8]).
f(third, [5, 9, 5]).
Example 2
%fact
f(first, [1,6,10]).
f(second, [7,3,8]).
f(third, [5,9,5]).
f(fourth, [7,3,9]).
f(fifth, [7,7,2]).
Example 3
%fact
f(first, [1,6,10,54,11,6]).
f(second, [7,3,8,34,2,7]).
Now, I need to write a predicate sum_list(), so that users can do the following things.
Example 1
?-sum_list([first,second,third], Even, Result).
Even = 1
Result = [13,18,23]
Example 2
?-sum_list([first,second,third,fourth,fifth], Even, Result).
Even = 2
Result = [27,28,34]
Example 3
?-sum_list([first,second], Even, Result).
Even = 3
Result = [8,9,18,88,13,13]
Result is a list which contains the sum of each element in the corresponding fact lists.
Even is counting the number of even number in the Result, in Example 2, only 28 and 34 are even, so Even = 2.
Thanks.
Thanks for SimoV8's hints, and I get some ideas to solve in the way:
%fact
f(first, [1, 6, 10]).
f(second, [7, 3, 8]).
sum_list([Head|Tail], E, R) :-
f(Head, P),
sw(P, Tail, [R]),
even(E,R).
sw(H1, [Head|Tail], [X|R]) :-
f(Head,S),
sum(H1, S, X),
sw(X, Tail, R).
sw(_, [], []).
sum([H1|T1],[H2|T2],[X|L3]) :-
sum(T1,T2,L3), X is H1+H2.
sum([],[],[]).
even(E, [X|R]) :-
even(E2, R),
((X mod 2) =:= 1 -> E is E2; E is E2 + 1).
even(0, []).
However, the answer only accepts two f(), if more than two f(), it will return FALSE
Try this:
sum_list([], 0, []).
sum_list([H|T], E, [RH|RT]):- f(H, X),
sum(X, RH),
sum_list(T, E2, RT),
((RH mod 2) =:= 1 -> E is E2; E is E2 + 1).
sum([], 0).
sum([H|T], S1):- sum(T, S2), S1 is H + S2.