Solving a recurrence relation for a recursive function - algorithm

I need to create and solve a recurrence relation for the worst-case analysis for the following psuedocode. I am counting the number additions (not including the for loop counter) as my basic operation.
I am assuming n=2^k.
Here is the progress I have made...
Base Case:
T(n<=4) = 1
W(n)=W(2^k)=additions to calculate answer+additions in next recursion+addition in for loop
W(2^k) = 2 + W(2^(k-2)) + (2^k) - 2 = W(2^(k-2)) + (2^k)
I use back substitution and get the following recurrence relation...
for the jth recursive call
W(2^k) = W(2^(k-2j)) + (2^k) + sum(t=1,j,2^(k-2(t-1)))
I know that I can simplify this because I take W(2^(k-2j)) = W(4) and solve for j to see how many recursive steps the code takes.
In this case, j=(k/2) - 1. Reducing the recurrence gives me...
W(2^k) = 1 + (2^k) + sum(t=1,j,2^(k-2(t-1))).
Reducing the summation gives me...
W(2^k) = 1 + (2^k) + (2^k)*(2^2)*sum(t=1,j,2^(-2t)) or
W(n) = 1 + n + 4n*sum(t=1,j,2^(-2t))
What I cannot simplify is the summation. In lectures, we may have a summation of sum(i=1,n,2^i), which would be 2^(n+1)-1, but this one is different.
int function calc(int n) {
int num,answer;
if(n<=4) {return n+10;}
else {
num=calc(n/4);
answer=(num+num+10);
for(int i=2;i<=n-1;i++) {
answer=answer+answer;
}
return answer;
}
}
Any help would be appreciated. This assignment is due tonight. Thanks

The time complexity of the problem is T(n) = T(n/4) + n. The term n could mean \Theta(n). Hence, T(n) = n + n/4 + n/4^2 + ... + n/(4^log_4(n)) = n(1 + 1/4 + ... + 1/n) = \Theta(n). Notice that lim_{n\to \infty} 1 + 1/4 + ... + 1/4^log_4(n) = 4/3 which is a constant number.

T(n) = T(2^k) // by assumption
T(n) = T(n/4) + n // is the recurrence relation
T(2^k) = T(2^(k-2)) + (2^k) // rewriting
T(2^k) = T(2^(k-2j)) + (2^k)*SUM(i=0;j-1;(1/4)^i) // is the relation for iteration j
T(4) = T(2^(k-2j)) = 1 // when the recursion ends, base case reached, only 1 addition
2^2 = 2^(k-2j) // rewrite and remove T
2=k-2j // remove common base
j=(k/2)-1 // solve for jth iteration
Notice: cannot have decimal for iteration, so j=CEILING((k/2)-1)
SUM(i=0;j-1;(1/4)^i) = (1-(1/4)^j)/(1-(1/4))
For geometric sums and proof of transformation above, see wiki link below
Substituting j with CEILING((k/2)-1), the summation is...
SUM = (1-(1/4)^(CEILING((k/2)-1)))/(1-(1/4))
Finally, T(2^k) = 1 + (2^k)*SUM
In terms of the input n, T(n) = 1 + (n*SUM)
This formula is good for all k>=1
Testing several values...
k=1, T(2) = 1 + (2*0) = 1 // we know this is true because T(2) is a base case
k=2, T(4) = 1 + (4*0) = 1 // we know this is true because T(4) is a base case
k=3, T(8) = 1 + (8*1) = 9 // by recurrence formula, T(8) = T(2) + 8 = 9, true
k=4, T(16) = 1 + (16*1) = 17 // by recurrence formula, T(16) = T(4) + 16 = 17, true
k=5, T(32) = 1 + (32*1.25) = 41 // by recurrence formula, T(32) = T(8) + 32, T(8) = 9, 32+9=41 true
For geometric sums
https://en.wikipedia.org/wiki/Geometric_series

Related

Solving a recurrence relation using Smoothness Rule

Consider this recurrence relation: x(n) = x(n/2) + n, for n > 1 and x(1) = 0.
Now here the method of back substitution will struggle for values of n not powers of 2, so it is best known here is to use the smoothness rule to solve this types of questions, and when we use the smoothness rule, where we will solve for n = 2^k (for n = values powers of 2) we will have a solution of x(n) = 2n - 1.
However, if we use the method of backward substitution, this recurrence relation will have a solution!
x(n) = x(n/2) + n = x(n/4) + n/2 + n = x(n/8) + n/4 + n/2 + n = x(n/16) + n/8 + n/4 + n/2 + n = ....
where the pattern is
x(n) = x(n/i) + n/(i/2) + n/(i/4) + n/(i/8) + n/(i/16) + ...
which will stop when n = 1 (i.e when i = n) and in this case
x(n) = x(n/n) + n/(n/2) + n/(n/4) + n/(n/8) + n/(n/16) + ... = 1 + 2 + 4 + 8 + 16 + ... = 2^(n+1) - 1
which is two different answers!
So please I am so confused here because in the textbook (Introduction to Analysis and Design of Algorithms by Anany Levitin) it is mention that we should use here the smoothness rule, but as you can see I have solved it exactly by the method of backward substitution where the method was expected here to struggle but nothing has happened!
The transition 1 + 2 + 4 + 8 + 16 + ... = 2^(n+1) - 1 is false.
That is since the number of elements in the left series is log n so the sum is 2^(log n + 1) - 1, which is exactly 2n - 1.
The reason there are log n elements is that n/(2^i) = 1 (the last element of the series is 1) when i = log n.

Determination of computational complexity of sample code

I give you three short codes:
First code:
procedure Proc (n:integer)
begin
if n>0 then
begin
writeln('x')
Proc(n-2)
writeln('*');
Proc(n-2)
end
end
Second code:
procedure Proc (n:integer)
begin
if n>0 then
begin
writeln('*');
Proc(n-1)
end
end
Third code:
procedure Proc (n:integer)
begin
if n>0 then
begin
writeln('x')
Proc(n/2)
writeln('*');
Proc(n/2)
end
end
I would like to know how to determine the computational complexity of each code that I gave, cuz it will help me to better understand.. Can someone write an algorithm for determination of computational complexity of sample code step by step, and do it so that it was possible to apply this algorithm for another examples of codes?
First Question: Assume you know that for the value of n - 2, Proc is called T(n-1) times. Therefore, for the value of n, T(n) = 1 + 2T(n-2), as there would be one call to Proc(n) which would in turn call Proc(n-2) twice. T(n) = 1 + 2T(n-2) is a variant of Tower of Hanoi which is T(n) = 1+2T(n-1). There are proofs here http://en.wikipedia.org/wiki/Tower_of_Hanoi to Show that T(n) = 1+2T(n-1) = 2^n-1. Therefore T(n-1) = 1+2T((n-1)-1)= 1+2T(n-2) = 2^(n-1) -1. In your case T(n) = 1 + 2T(n-2) = 2^(n-1) -1. In other words, subtracting out every other term in the Tower of Hanoi problem saves about half the calls. 2^(n-1) - 1 = 2^n/2 - 1 which is O(2^n).
Second Question: This is easier. T(0) = 1 and T(n) = 1 + T(n-1). You can solve this many different ways, but one is via telescoping:
T(n) = 1 + T(n-1)
T(n-1) = 1 + (n-2)
...
T(1) = 1 + T(0)
Adding up both sides...
T(n) + T(n-1)+...+T(1) = 1 + T(n-1) + ... + 1 + T(0) = n + T(n-1)+...+T(0)
Subtract out like terms.
T(n) = n + T(0) = n + 1. So this is O(n).
Third Question: Similar to the first. T(0) = 1, say we know that for value of n-1, you can see that T(n) = 1 + 2 T(n/2). Note here that T(n) = 1 + 2T(n/2) < n + 2T(n/2).
So solve for 2T(n/2) + n with rolling out the recurrence:
T(n) = 2 T(n/2) + n
T(n/2) = 2 T(n/4) + n/2
So T(n) = 4T(n/4) + n + n
T(n/4) = 2T(n/8) + n/4
So T(n) = 8T(n/8) n + n + n
... It looks like T(n) = 2^kT(n/2^k)+kn for positive k.
Prove it by induction.
k = 1: T(n) = 2 T(n/2)+n which was given. This is our base case.
If true for k-1, show true for k:
T(n) = (2^(k-1))T(n/2^(k-1))+(k-1)n //Inductive hypothesis
T(n/2^(k-1)) = 2 T([n/2^(k-1))]/2)+n/2^(k-1)) //Given recurrence
= 2T(n/2^k)+n/2^(k-1)
=> T(n) = (2^k)T(n/2^k)+ n + (k-1)n = (2^k)T(n/2^k) + kn. So true for k.
T(n) = 2^kT(n/2^k)+kn, choose an appropriate positive k, such as k = ln(n).
T(n) = 2^ln(n) T(n/2^Ln(n)) + nln(n) = nT(1) +nln(n).
T(1) = 1 since Proc would just end. So n(T(1)) + nln(n) = nln(n) + n = O(nln(n)).
Unfortunately, there is not a one-size-fits all procedure for complexity. You have to take it on a case-by-case basis and figure out the problem.

Solve the recurrence: T(n)=2T(n/2)+n/logn

I can find the sum of each row (n/log n-i) and also I can draw its recursive tree but I can't calculate sum of its rows.
T(n)=2T(n/2)+n/logn
T(1) = 1
Suppose n = 2^k;
We know for harmonic series (euler formula):
Sum[i = 1 to n](1/i) ~= log(n) [n -> infinity]
t(n) = 2t(n/2) + n/log(n)
= 2(2t(n/4) + n/2/log(n/2)) + n/log(n)
= 4t(n/4) + n/log(n/2) + n/log(n)
= 4(2t(n/8) + n/4/log(n/4)) + n/log(n/2) + n/log(n)
= 8t(n/8) + n/log(n/4) + n/log(n/2) + n/log(n)
= 16t(n/16) + n/log(n/8) + n/log(n/4) + n/log(n/2) + n/log(n)
= n * t(1) + n/log(2) + n/log(4) + ... + n/log(n/2) + n/log(n)
= n(1 + Sum[i = 1 to log(n)](1/log(2^i)))
= n(1 + Sum[i = 1 to log(n)](1/i))
~= n(1 + log(log(n)))
= n + n*log(log(n)))
~= n*log(log(n)) [n -> infinity]
When you start unrolling the recursion, you will get:
Your base case is T(1) = 1, so this means that n = 2^k. Substituting you will get:
The second sum behaves the same as harmonic series and therefore can be approximated as log(k). Now that k = log(n) the resulting answer is:
Follow Extended Masters Theorem Below.
Using Extended Masters Theorem T(n)=2T(n/2)+n/logn can be solved easily as follows.
Here n/log n part can be rewritten as n * (logn)^-1,
Effictively maaking value of p=-1.
Now Extended Masters Theorem can be applied easily, it will relate to case 2b of Extended Masters Theorem .
T(n)= O(nloglogn)
Follow this for more detailed explanation
https://www.youtube.com/watch?v=Aude2ZqQjUI

time complexity of following recurrence?

Find out the time complexity (Big Oh Bound) of the recurrence T(n) = T(⌊n⌋) + T(⌈n⌉) + 1.
How the time complexity of this comes out to be O(n)??
You probably ment T(n)=T(⌊n/2⌋)+ T(⌈n/2⌉) + 1.
Lets calculate first few values of T(n).
T(1) = 1
T(2) = 3
T(3) = 5
T(4) = 7
We can guess that T(n) = 2 * n - 1.
Lets prove that by mathematical induction
Basis
T(1) = 1
T(2) = 3
T(3) = 5
T(4) = 7
Inductive step
T(2*n) = T(⌊2*n/2⌋)+ T(⌈2*n/2⌉) + 1
= T(⌊n⌋)+ T(⌈n⌉) + 1
= (2*n - 1) + (2*n - 1) + 1
= 4*n - 1
= 2 * (2*n) - 1
T(2*n+1) = T(⌊(2*n+1)/2⌋)+ T(⌈(2*n+1)/2⌉) + 1
= T(n)+ T(n+1) + 1
= (2*n - 1) + (2*(n+1) - 1) + 1 =
= 4*n + 1 =
= (2*n+1)*2 - 1
Since both the basis and the inductive step have been proved, it has now been proved by mathematical induction that T(n) holds for all natural 2*n - 1.
T(n) = 2*n - 1 = O(n)
What you have currently does not make sense. Since n is usually taken to be a natural number, then n=⌊n⌋=⌈n⌉. The recurrence then reads: break down a problem of size n into two problems of size n and spend time 1 doing that. The two new problems you just created will be split in turn, and so on- all you are doing is creating more work for yourself.

Confused on recurrence and Big O

I know that
T(n) = T(n/2) + θ(1) can be result to O(Log N)
and my book said this is a case of Binary Search.
But, how do you know that? Is it just by the fact that Binary Search cuts the problem in half each time so it is O(Log N)?
And T(n) = 2T(n/2) + θ(1)
why is it that the result is O(N) and not O(Log N) when the algorithm divides in half each time as well.
Then T(n) = 2T(n/2) + θ(n)
can be result to O(N Log N)? I see the O(N) is from θ(n) and O(Log N) is from T(n/2)
I am really confused about how to determine the Big O of an algorithm that I don't even know how to word it properly. I hope my question is making sense.
Thanks in advance!
an intuitive solution for these problems is to see the result when unfolding the recursive formula:
Let's assume Theta(1) is actually 1 and Theta(n) is n, for simplicity
T(n) = T(n/2) + 1 = T(n/4) + 1 + 1 = T(n/8) + 1 + 1 + 1 = ... =
= T(0) + 1 + ... + 1 [logN times] = logn
T'(n) = 2T'(n/2) + 1 = 2(2T'(n/4) + 1) + 1 = 4T'(n/4) + 2 + 1 =
= 8T'(n/4) + 4 + 2 + 1 = ... = 2^(logn) + 2^(logn-1) + ... + 1 = n + n/2 + ... + 1 =
= 2n-1
T''(n) = 2T(n/2) + n = 2(2T''(n/2) + n/2) + n = 4T''(n/4) + 2* (n/2) + n =
= 8T''(n/8) + 4*n/4 + 2*n/2 + n = .... = n + n + .. + n [logn times] = nlogn
To formally prove these equations, you should use induction. Assume T(n/2) = X, and using it - prove T(n) = Y, as expected.
For example, for the first formula [T(n) = T(n/2) + 1] - and assume base is T(1) = 0
Base trivially holds for n = 1
Assume T(n) <= logn for any k <= n-1, and prove it for k = n
T(n) = T(n/2) + 1 <= (induction hypothesis) log(n/2) + 1 = log(n/2) + log(2) = log(n/2*2) = log(n)
I find an easy way to understand these is to consider the time the algorithm spends on each step of the recurrence, and then add them up to find the total time. First, let's consider
T(n) = T(n/2) + O(1)
where n=64. Let's add up how much the algorithm takes at each step:
T(64) = T(32) + 1 ... 1 so far
T(32) = T(16) + 1 ... 2 so far
T(16) = T(08) + 1 ... 3 so far
T(08) = T(04) + 1 ... 4 so far
T(04) = T(02) + 1 ... 5 so far
T(02) = T(01) + 1 ... 6 so far
T(01) = 1 ... 7 total
So, we can see that the algorithm took '1' time at each step. And, since each step divides the input in half, the total work is the number of times the algorithm had to divide the input in two... which is log2 n.
Next, let's consider the case where
T(n) = 2T(n/2) + O(1)
However, to make things simpler, we'll build up from the base case T(1) = 1.
T(01) = 1 ... 1 so far
now we have to do T(01) twice and then add one, so
T(02) = 2T(01) + 1 ... (1*2)+1 = 3
now we have to do T(02) twice, and then add one, so
T(04) = 2T(02) + 1 ... (3*2)+1 = 7
T(08) = 2T(04) + 1 ... (7*2)+1 = 15
T(16) = 2T(08) + 1 ... (15*2)+1 = 31
T(32) = 2T(16) + 1 ... (32*2)+1 = 63
T(64) = 2T(32) + 1 ... (65*2)+1 = 127
So we can see that here the algorithm has done 127 work - which is equal to the input multiplied by a constant (2) and plus a constant (-1), which is O(n). Basically this recursion corresponds to the infinite sequence (1 + 1/2 + 1/4 + 1/8 + 1/16) which sums to 2.
Try using this method on T(n) = 2T(n/2) + n and see if it makes more sense to you.
One visual solution to find the T(n) for a recursive equation is to sketch it with a tree then:
T(n) = number of nodes * time specified on each node.
In your case T(n) = 2T(n/2) + 1
I write the one in the node itself and expand it to two node T(n/2)
Note T(n/2) = 2T(n/4) + 1, and again I do the same for it.
T(n) + 1
/ \
T(n/2)+1 T(n/2)+1
/ \ / \
T(n/4)+1 T(n/4)+1 T(n/4)+1 T(n/4)+1
... ... .. .. .. .. .. ..
T(1) T(1) .......... ............T(1)
In this tree the number of nodes equals
2*height of tree = 2*log(n) = n
Then T(n) = n * 1 = n = O(n)

Resources