Segmentation fault after calling reset on unique_ptr - c++11

I'm getting a segmentation fault while calling reset on unique_ptr:
Node* tree::left_rotate(Node* node) {
Node* temp = node->right.get();
node->right.reset(temp->left.get());
temp->left.reset(node); // **Here is segmentation fault happens**
if(node->right.get()) {
node->right->parent = node;
}
temp->parent = node->parent;
if(node->parent) {
if(node == node->parent->left.get()) {
node->parent->left.reset(temp);
node->parent = node->parent->left.get();
} else if(node == node->parent->right.get()) {
node->parent->right.reset(temp);
node->parent = node->parent->right.get();
}
}
return temp;
}
Node has the following structure:
class Node {
public:
int data;
Node* parent;
std::unique_ptr<Node> left;
std::unique_ptr<Node> right;
public:
Node() : data(0) {
}
explicit Node(int d) : data(d),
parent(nullptr),
left(nullptr),
right(nullptr) {}
};
gdb reports:
Thread 1 received signal SIGSEGV, Segmentation fault. 0x00404ae5 in
std::unique_ptr >::~unique_ptr (
this=0xfeeefefa, __in_chrg=)
at C:/Program Files (x86)/mingw-w64/i686-8.1.0-posix-dwarf-rt_v6-rev0/mingw32/lib/gcc/i686-w64-mingw32/8.1.0/include/c++/bits/unique_ptr.h:273
273 if (__ptr != nullptr)
The report from one stack-frame upper:
#2 0x004047e8 in std::default_delete<Node>::operator() (this=0xfe1de4,
__ptr=0xfeeefeee)
at C:/Program Files (x86)/mingw-w64/i686-8.1.0-posix-dwarf-rt_v6-rev0/mingw32/lib/gcc/i686-w64-mingw32/8.1.0/include/c++/bits/unique_ptr.h:81
81 delete __ptr;
So it seems here is double deletion. How this issue can be solved? Maybe it worths to have a temp pointer as a shared_ptr?

Node* temp = node->right.get();
temp is a raw pointer to the node's right node
node->right.reset(temp->left.get());
the node's right node is reset to the temp's left node, thus the original node's right node (to which temp points) gets deleted. That means that the temp raw pointer is now pointing to a deleted node.
temp->left.reset(node); // **Here is segmentation fault happens**
As temp is deleted, dereferencing it to get it's left node lead to bad things.
A quick thought, maybe use release() instead of get() at the first place to take over ownership of the node's right node ?

Related

Postorder Traversal of Tree iterative method

I am trying to implement postorder traversal of tree using 2 stacks using iterative method. I have implementated the right algorithm. But still didn't getting output, getting error as, Segmentation fault (core dumped).
Where I have done wrong can anyone tell me ?
void postorder_iterative(struct node *root)
{
struct node *stack1[15],*stack2[15];
int top1=-1,top2 =-1;
root = stack1[++top1];
while(top1>=0)
{
root = stack1[top1--];
stack2[++top2] =root;
if(root->left != NULL)
stack1[++top1] = root->left;
if(root->right != NULL)
stack1[++top1] = root->right;
}
while(top2>=0)
printf("%c\t",stack2[top2--]->data);
}
You are reading an undefined value with this statement, in the first iteration of the loop:
root = stack1[top1--];
This first stack element is undefined, because you never initialised it. It was supposed to get initialised here:
root = stack1[++top1];
But this does not put anything in the stack. Instead it overwrites root with an undefined value.
It should have been the reversed:
stack1[++top1] = root;
This fixes the issue.
Don't forget to print a new line character once you have printed the list, so nothing is pending in the buffer.

Implementing an Iterative Single Stack Binary Tree Copy Function

As a thought exercise I am trying to implement an iterative tree (binary or binary search tree) copy function.
It is my understanding that it can be achieved trivially:
with a single stack
without using a wrapper (that contains references to the copy and original nodes)
without a node having a reference to it's parent (would a parent reference in a node be counter to a true definition of a tree [which I believe is a DAG]?)
I have written different implementations that meet the inverse of the above constraints but I am uncertain how to approach the problem with the constraints.
I did not see anything in Algorithms 4/e and have not seen anything online (beyond statements of how trivial it is). I considered using the concepts from in order and post order of a current/previous var but I did not see a way to track accurately when popping the stack. I also briefly considered a hash map but I feel this is still just extra storage like the extra stack.
Any help in understanding the concepts/idioms behind the approach that I am not seeing is gratefully received.
Thanks in advance.
Edit:
Some requests for what I've tried so far. Here is the 2 stack solution which I believe is supposed to be able to turn into the 1 stack the most trivially.
It's written in C++. I am new to the language (but not programming) and teaching myself using C++ Primer 5/e (Lippman, Lajole, Moo) [C++11] and the internet. If any of the code from a language perspective is wrong, please let me know (although I'm aware Code Review Stack Exchange is the place for an actual review).
I have a template Node that is used by other parts of the code.
template<typename T>
struct Node;
typedef Node<std::string> tree_node;
typedef std::shared_ptr<tree_node> shared_ptr_node;
template<typename T>
struct Node final {
public:
const T value;
const shared_ptr_node &left = m_left;
const shared_ptr_node &right = m_right;
Node(const T value, const shared_ptr_node left = nullptr, const shared_ptr_node right = nullptr) : value(value), m_left(left), m_right (right) {}
void updateLeft(const shared_ptr_node node) {
m_left = node;
}
void updateRight(const shared_ptr_node node) {
m_right = node;
}
private:
shared_ptr_node m_left;
shared_ptr_node m_right;
};
And then the 2 stack implementation.
shared_ptr_node iterativeCopy2Stacks(const shared_ptr_node &node) {
const shared_ptr_node newRoot = std::make_shared<tree_node>(node->value);
std::stack<const shared_ptr_node> s;
s.push(node);
std::stack<const shared_ptr_node> copyS;
copyS.push(newRoot);
shared_ptr_node original = nullptr;
shared_ptr_node copy = nullptr;
while (!s.empty()) {
original = s.top();
s.pop();
copy = copyS.top();
copyS.pop();
if (original->right) {
s.push(original->right);
copy->updateRight(std::make_shared<tree_node>(original->right->value));
copyS.push(copy->right);
}
if (original->left) {
s.push(original->left);
copy->updateLeft(std::make_shared<tree_node>(original->left->value));
copyS.push(copy->left);
}
}
return newRoot;
}
I'm not fluent in c++, so you'll have to settle with pseudocode:
node copy(treenode n):
if n == null
return null
node tmp = clone(n) //no deep clone!!!
stack s
s.push(tmp)
while !s.empty():
node n = s.pop()
if n.left != null:
n.left = clone(n.left)
s.push(n.left)
if n.right != null:
n.right = clone(n.right)
s.push(n.right)
return tmp
Note that clone(node) is not a deep-clone. The basic idea is to start with a shallow-clone of the root, then iterate over all children of that node and replace those nodes (still references to the original node) by shallow copies, replace those nodes children, etc.. This algorithm traverses the tree in a DFS-manner. In case you prefer BFS (for whatever reason) you could just replace the stack by a queue. Another advantage of this code: it can be altered with a few minor changes to work for arbitrary trees.
A recursive version of this algorithm (in case you prefer recursive code over my horrible prosa):
node copyRec(node n):
if n.left != null:
n.left = clone(n.left)
copyRec(n.left)
if n.right != null:
n.right = clone(n.right)
copyRec(n.right)
return n
node copy(node n):
return copyRec(clone(n))
EDIT:
If you want to have a look at working code, I've created an implementation in python.

Singly Linked List using shared_ptr

I was trying to implement singly linked list using share_ptr. Here is the implementation...
Below is the node class...
template<typename T>
class Node
{
public:
T value;
shared_ptr<Node<T>> next;
Node() : value(0), next(nullptr){};
Node(T value) : value(value), next(nullptr){};
~Node() { cout << "In Destructor: " << value << endl; };
};
Below is the linked list class...
template<typename T>
class LinkedList
{
private:
size_t m_size;
shared_ptr<Node<T>> head;
shared_ptr<Node<T>> tail;
public:
LinkedList() : m_size(0), head(nullptr) {};
void push_front(T value)
{
shared_ptr<Node<T>> temp = head;
head = make_shared<Node<T>>(Node<T>(value));
head->next = temp;
m_size++;
if (m_size == 1)
tail = head;
}
void pop_front()
{
if (m_size != 0)
{
// Here I am having doubt------------------------!!!
//shared_ptr<Node<T>> temp = head;
head = head->next;
m_size--;
if (m_size == 0)
tail = nullptr;
}
}
bool empty()
{
return (m_size == 0) ? true : false;
}
T front()
{
if (m_size != 0)
return head->value;
}
};
My question is, am I using the shared_ptr properly for allocating a node? If not, how should I use the shared_ptr to allocate and how should I delete the node in the pop_front method?
I believe this belongs on code review.
Most importantly: Why are you using shared_ptr? shared_ptr means the ownership of an object is unclear. This is not the case for linked lists: Every node owns the next. You can express that using unique_ptr which is easier and more efficient.
pop_front seems to be functioning correctly. You may consider throwing an exception or an assertion instead of doing nothing when using pop_front on an empty list.
front is more problematic. If the list is empty you most likely get a garbage object.
What is the significance of tail? It does not seem to be used for anything and since you cannot go backwards there is no real point to getting the tail.
make_shared<Node<T>>(Node<T>(value)) should be make_shared<Node<T>>(value) instead. make_shared<Node<T>>(value) creates a Node using value as the parameter for the constructor. make_shared<Node<T>>(Node<T>(value)) creates a Node with value as the parameter and then creates a new Node with the temporary Node as parameter and then destroys the first Node.
You are missing the copy and move constructor and assignment and move assignment operators.
After you are satisfied with your list implementation consider using std::forward_list instead.

Having trouble implementing a linked list in c++

I am trying to implement a simple singly linked list of integers which are to be sorted upon insertion in Visual Studio c++ 2010 express.
The problem is that when I create a new node and call the .getValue() function on it, the correct number is returned, however somehow that is being lost when I try calling getValue() on a node already in the list. The node might not be inserted into the list correctly, however I can't find why that would be the case. Some other value which looks like a reference value or something is displayed instead of the correct value.
I added current to the watch window when debugging but was still unable to see any of my variables other than the give value to be inserted. I am new to visual studio so I'm not sure if I'm missing something there. Here is my code:
#include "Node.h";
#include <iostream>
//namespace Linked{
//The first two constructors would be the first in the linked list.
Node::Node(void){
value = 0;
next = 0;
}
Node::Node(int setValue){
value = setValue;
next = 0;
}
Node::Node(int setValue,Node *nextNode){
value = setValue;
next = nextNode;
}
Node * Node::getNext(){
return next;
}
void Node::setNext(Node newNext){
next = &newNext;
}
int Node::getValue(){
return value;
}
bool Node::isEqual(Node check){
return value==check.getValue()&&next == check.getNext();
}
/*
int main(){
int firstInt, secondInt;
std::cin>>firstInt;
Node first = Node(firstInt);
std::cout<<"Enter second int: ";
std::cin>>secondInt;
Node second = Node(secondInt, &first);
std::cout<<"Second: "<<second.getValue()<<"\nFirst: "<<(*second.getNext()).getValue();
system("pause");
}*/
Here is the linked list:
//LinkedList.cpp
LinkedList::LinkedList(void)
{
head = 0;
size = 0;
}
LinkedList::LinkedList(int value)
{
head = &Node(value);
size = 1;
}
void LinkedList::insert(int value){
if(head == 0){
Node newNode = Node(value);
head = &newNode;
std::cout<<"Adding "<<(*head).getValue()<<" as head.\n";
}else{
std::cout<<"Adding ";
Node current = *head;
int numChecked = 0;
while(size<=numChecked && (((*current.getNext()).getValue())<value)){
current = (*(current.getNext()));
numChecked++;
}
if(current.isEqual(*head)&&current.getValue()<value){
Node newNode = Node(value, &current);
std::cout<<newNode.getValue()<<" before the head: "<<current.getValue()<<"\n";
}else{
Node newNode = Node(value,current.getNext());
current.setNext(newNode);
std::cout<<newNode.getValue()<<" after "<<current.getValue()<<"\n";
}
}
size++;
}
void LinkedList::remove(int){
}
void LinkedList::print(){
Node current = *head;
std::cout<<current.getValue()<<" is the head";
int numPrinted = 0;
while(numPrinted<(size-1)){
std::cout<<(current.getValue())<<", ";
current = (*(current.getNext()));
numPrinted++;
}
}
int main(){
int a[5] = {30,20,25,13,2};
LinkedList myList = LinkedList();
int i;
for(i = 0 ; i<5 ; i++){
myList.insert(a[i]);
}
myList.print();
system("pause");
}
Any guidance would be greatly appreciated!
When you create nodes in insert, you're allocating them off the stack, which means that they'll be lost after the function returns.
Get them off the heap with:
Node * newNode=new Node(value);
When you use:
Node newNode=Node(value);
You're allocating that object on the stack, which means that pointers:
&newNode
to it are only valid until that function returns. If you use heap memory this is no longer an issue, but it does mean that you have to implement a destructor for your list which goes through and deletes each node.

Binary Search Tree remove node function

I am working on a binary search tree and i have been given an insertnode function that looks like
void insertNode(Node **t, Node *n)
{
if(!(*t))
*t=n;
else if((*t)->key<n->key)insertNode(&(*t)->right,n);
else if((*t)->key>n->key) insertNode(&(*t)->left,n);
}
I am trying to write a function that removes nodes recursively so far i have come up with:
void remove(int huntKey,Node **t)
{
bool keyFound=false;
if(!(*t))
cout<<"There are no nodes"<<endl;
while(keyFound==false)
{
if((*t)->key==huntKey)
{
keyFound=true;
(*t)->key=0;
}
else if((*t)->key < huntKey)remove(huntKey,&(*t)->right);
else if((*t)->key> huntKey) remove(huntKey,&(*t)->left);
}
}
Both of these functions are getting called from a switch in my main function which looks like:
int main()
{
int key=0,countCatch=0;char q;
Node *t, *n;
t=0;
while((q=menu()) !=0)
{
switch(q)
{
case'?': menu(); break;
case'i': inOrderPrint(t); break;
case'a': preOrderPrint(t); break;
case'b': postOrderPrint(t); break;
case'c': {cout<<"enter key: ";cin>>key;
n=createNode(key);insertNode(&t,n);break;}
case'r':{cout<<"enter the key you want removed: ";
cin>>key;
remove(key,&t);
break;}
case'n': {countCatch=countNodes(t);cout<<countCatch<<"\n"; };break;
}
}
return 0;
}
my remove node function is not working properly....any advice would help....
When you remove the node, you are only setting its key to '0', not actually removing it.
Example:
'4' has child '2,' which has children '1' and '3.'
In your code, removing '2' gives you this tree: 4 has child 0, which has children 1 and 3.
To remove an internal node (a node with children), you must handle its parent pointer and its children. You must set the parent's child-pointer to one of the removed node's children. Check this article for more:
http://en.wikipedia.org/wiki/Binary_tree#Deletion
Look at the code, it is not recursive though
http://code.google.com/p/cstl/source/browse/src/c_rb.c

Resources