Hadoop : Yarn and local memory usage - hadoop

If we reserve 80% of memory for yarn, and then for some reason lets say memory leak for example, the os and local programs consumed 50% of memory.
Does yarn will be aware that there is only 50% for him ? whats the impact for the newly submitted applications ?

YARN doesn't monitor the OS for available memory. It's run as a normal process like everything else. So the OS will do what it does whenever more memory is asked for than is available.
RE: MapReduce, most MR jobs typically use far less memory than they need so in most cases a local process over-consuming memory will not cause any problems. YARN developers have noticed this underutilization pattern and have enabled a feature Opportunistic Containers to maximize node efficiency.

Related

what is the minimum memory required for executing mldeploy in marklogic

I am running mldeploy in VM is having 3GB memory but it is failing due to insufficient memory.What is the minimum memory required to run mldeploy in marklogic or if there is any settings allow to run ml deploy in 3GB memory
This is a function of the memory required by Gradle and the JVM that it runs in, along with the memory consumed by the ml-gradle plugin itself. By default, Gradle runs in "daemon" mode - you can find out more information at https://docs.gradle.org/current/userguide/gradle_daemon.html , including information on understanding how much memory Gradle is consuming.
3GB is on the low side - I can't remember the last time I used a JVM-based development tool like Gradle on a machine with less than 8GB. I'd want to guess that 4GB should suffice, but I don't know, and there's also the matter of what else is running within your VM and consuming memory.

Is restart required after changing operating system configuration and tuning

I have a cassandra cluster where I recently added two new nodes . Looking at the stats I observed that disk I/O in these newly added machines is way higher than the already present machines .
On checking I found that the read_ahead_kb OS configuration on these machines is 4096 whereas other machines it is 4 .
I changed the value but the disk I/O is still same . Do we need to restart the machines for these OS configuration changes to take effect ?
Also if there is any other setting I need to look at .
It depends how you set the readahead value. The following command will set the readahead for /dev/sda to 4kb, and will take effect immediately (no reboot necessary):
sudo blockdev --setra 4 /dev/sda
I recommend configuring a udev rule (as described here), as otherwise the change will be lost after a reboot.
Read ahead is one of the most important performance tweaks regarding disk I/O & throughput. Some other things that are important for read performance:
ensure you have plenty of free RAM for the OS page cache
disable swap
use SSDs over spinning disks, especially if you have a read-heavy workload
This guide is a few years old, but many of the OS tuning & hardware recommendations still apply to Cassandra 3.x:
https://tobert.github.io/pages/als-cassandra-21-tuning-guide.html

Can I stop Windows from over-eagerly reclaiming physical memory?

I am writing a server app which I want to efficiently use ALL available physical RAM of the machine when possible. The plan is that it will allocate physical pages using AWE until it detects that 99% of physical memory and stop when 1% is free, and any time physical memory drops below 1% free, it will free physical pages it doesn't need.
However when I put this plan into practice, Windows seems to think any time it has 99% of RAM in use it would be a good idea to free up more physical memory, and so it starts paging all sorts of stuff to disk, and my system crashes.
How can I tell Windows it is OK to have 99% of RAM in use and it doesn't need to try to page stuff back to disk until it reaches whatever its default perceived ideal level of usage is (I guess it will be something like 90%...)
Note: Raymond says 'Unless you are designing a system where you are the only program running on the computer, this is a bad idea.'
In this server scenario this is basically intended to be the only app running on the computer. But unfortunately there are some OS/background tasks that need to run...
But certainly I don't expect there is any other process on the computer indulging in this 'use all but 1% of RAM' behavior...?
Update: I've done more experimentation and started to wonder if I'm somewhat asking the wrong question. My assumption that windows is being overeager may be wrong. Perhaps the question should instead have been 'how can I determine how much physical RAM my process can safely use without compromising overall responsiveness on the machine'?
You can't. The Windows memory manager runs at a lower level than your program and knows nothing about your program (and even if it did, it has no reason to assume your program is the good citizen you claim it to be. What if your program crashes, or has an off-by-one error in a loop that mallocs? What about other programs that need memory while yours is running? What about the thousand other scenarios that the guys who wrote the Windows MM encountered when they were writing it?)
Don't try to be cleverer than Windows. A more productive use of your time would be to consider if your application really needs to allocate 99% physical memory up front.

5.6 GB not enough for Cloudera?

I am running Cloudera Hadoop on my laptop and Oracle VirtualBox VM.
I have given 5.6 GB out of mine 8 and six from eight cores as well.
And still I am not able to keep it up and running.
Even without load services would not stay up and running and when I try a query at least Hive will be down within 20 minutes. And sometimes they go down like dominoes: one after another.
More memory seemed to help some: with 3GB and all services, Hue was blinking with red colors when the Hue itself managed to get up. And after rebooting it would takes 30 - 60 minutes before I manage to get the system up enough to even try running anything on it.
There has been two sensible notes (that I have managed to find):
- Warning of swapping.
- Crashing note when the system used 26 GB of virtual memory which was not enough.
My dataset is less than one megabyte, so it is hard to understand why the system would go up to dozens of gigabytes, but for whatever was reason for that has passed: now the system is running more steadily around the 5.6 GB that I have given to it after closing down a few services: see my answer to myself.
And still it is just more stable. Right after I got a warning of swapping and the Hive went down again. What could be reason for more-or-less all Hadoop services going down if the VM starts to swap?
I don't have enough reputation to post the picture to here, but when Hive went down again it was swapping 13 pages / second and utilizing 5.9 GB / 5.6 GB. So basically my system starts crashing more-or-less right after it start to swap. "428 pages were swapped to disk in the previous 15 minute(s)"
I have used default installation options as far as hard drive is concerned.
Only addition is a shared folder between Windows and VM. That works somewhat strangely locking files all the time, so I used it just like FTP and only for passing files from one system to another. Thus I can go days without using it, but systems still crash, so that is not the cause either.
Now that the system is mostly up, services crash still about twice a day: Service Monitor and Hive are quite even with their crashing frequency. After those come Activity Monitor and Event Server, which appear to crash always together. I believe Yarn crashes as well, but it gets up on its own. Last time Hive crashed first, and then it got followed by Service Monitor, Hive (second time), Activity Monitor and Event Server all.
As swap is disk, perhaps the problem is with disk:
# cat /etc/fstab
# swapoff -a
# badblocks -v /dev/VolGroup/lv_swap
Checking blocks 0 to 8388607
Checking for bad blocks (read-only test): done
Pass completed, 0 bad blocks found.
# badblocks -vw /dev/VolGroup/lv_swap
Checking for bad blocks in read-write mode
From block 0 to 8388607
Testing with pattern 0xaa: done
Reading and comparing: done
Testing with pattern 0x55: done
Reading and comparing: done
Testing with pattern 0xff: done
Reading and comparing: done
Testing with pattern 0x00: done
Reading and comparing: done
Pass completed, 0 bad blocks found.
So nothing wrong with swap disk and I have not noticed any disk error anywhere else either.
Note that you could check file system from Windows side also. But I expect that if you make Windows to fix your Linux file system, you have good chances of destroying your Linux with that, so I did my checks somewhat pessimistically, because AFAIK these commands are safe to execute.
About half of the services kept going down, so giving more specifics would be a long story.
I succeeded to get the system more stable by closing down flume, hbase, impala, ks_indexer, oozie, spark and sqoop. And by increasing more memory to some remaining services that complained they had not been given enough memory.
Also I fixed couple of thing on the Windows side, I am not sure which one of these helped:
- MsMpEng.exe kept my hard drive busy. I didn't have permissions to kill it, but I decreased its priority to lowest possible.
- CcmExec.exe got to loop on my DVD and kept reading it for forever. This I solved by taking the DVD out from the drive. Then later on I killed the process tree to keep it from bothering for a while.
I found these using Windows resource manager.
The VM requires 4GB: http://www.cloudera.com/content/cloudera-content/cloudera-docs/DemoVMs/Cloudera-QuickStart-VM/cloudera_quickstart_vm.html You should use that.
I am not clear whether you are using the QuickStart VM though. It's set up to run just the essential services and tuned to conserve memory rather than exploit lots of memory.
It sounds like you are running your own installation, on one virtual machine, on your Windows machine. You may be running an entire cluster's worth of services on one desktop machine. Each of these services has master, worker processes, monitoring processes, etc. You don't need most of them.
You also probably have left memory settings at default suitable for a server-class machine of 16+ GB RAM. Remember these services usually run across many machines, not all on one.
Finally, you're clearly swapping, and that makes things incredibly slow. Remember this is all through a VM too!
Bottom line, use the QuickStart VM if you really want a 1-machine cluster tuned correctly. If you want a real cluster or more services, you need more hardware.
Also consider: cloudera.com/live contains a full CDH 5.1 cluster + sample data, running on demand on AWS. Of course, the advantage of the VM is that you can BYOD, but if you're simply looking for a hands-on Hadoop experience, Live is a great option.

Understanding CentOS Memory usage

I am not an OS expert, and I am having trouble understanding my server's memory usage. I need your advices to understand the following:
My server has 8 GB RAM and operates as web server. PHP, mySQL and Apache processes consume the majority of the memory. When I issue the command "free" after the system is rebooted, I would normally see something along these lines:
total used free shared buffers cached
Mem: 8059080 2277924 5781156 0 948 310852
-/+ buffers/cache: 1966124 6092956
Swap: 4194296 0 4092668
Obviously, sooner or later the free memory would drop and the cached memory would increase and I assume there is nothing wrong with that since the OS decides to cache it.
What I don't understand is about 1-2 days later after the machine is rebooted, I would slightly see an increase in the used swap memory. Does not this mean that the server does not have free memory anymore and using IO instead? How can I understand which processes cause this?
I am asking this question to stackoverflow users because if I ask it to my hosting provider, I am sure they would ask more money to increase RAM.
Thanks.
This is perfectly normal. When the machine starts up, a large number of services also start up. As they run their startup code, read their configuration, and so on, they dirty some pages of memory. Many of these services will never run again. By writing this data to swap, the operating system accomplishes two things:
First, if it ever does encounter memory pressure, it can discard the pages without having to write them first, since it has already written them. Second, it can discard the pages to make more free memory to enlarge the cache.
The alternative is to keep information that hasn't been touched in days in physical memory. And that just doesn't make sense.

Resources