I am writing microservice in Dart.
Service run workers by passing command args to workers like: "app.exe -a=1,2,3,4".
So if currentlyActiveWorkers is 4. Then jobs can be splited to sevaral workers like:
first: "app.exe -a=1,2,3,4"
second: "app.exe -a=5,6,7,8"
third: "app.exe -a=9,10,11,12"
fourth: "app.exe -a=13,14,15,16".
I wrote next prototype:
void main() {
int maxWorkers = 16;
int currentlyActiveWorkers = 2;
genJobs() {
int step = 1;
int sliceSize = (maxWorkers/currentlyActiveWorkers).round();
var list = [for(var i=step; i<=maxWorkers; i+=1) i];
for(int i in Iterable<int>.generate(currentlyActiveWorkers))
{
print(list.sublist(i * sliceSize, sliceSize * step));
step++;
}
}
genJobs();
}
It work fine if currentlyActiveWorkers is multiple of 2. It's generate suitable jobs numbers:
[1, 2, 3, 4, 5, 6, 7, 8]
[9, 10, 11, 12, 13, 14, 15, 16]
But there is bug if user specify for example 3. Last number 16 is loosing.
Output:
[1, 2, 3, 4, 5]
[6, 7, 8, 9, 10]
[11, 12, 13, 14, 15]
It does not matter for me the number element in every group +- 1 is ok for me.
Your rounding logic is ambiguous. Besides, you should handle the last chunk of data in different way:
void main() {
print(genJobs());
}
Map<int, List<int>> genJobs() {
final activeWorkers = 3;
final maxJobs = 16;
final jobs = List<int>.generate(maxJobs, (i) => i + 1);
final workerCapacity = (jobs.length / activeWorkers).floor();
var chunks = <int, List<int>>{};
for (var workerNumber = 0; workerNumber < activeWorkers; workerNumber++) {
final startIndex = workerNumber * workerCapacity;
final endIndex = startIndex + workerCapacity;
final chunk = jobs.sublist(
startIndex,
endIndex > jobs.length || workerNumber == activeWorkers - 1
? jobs.length
: endIndex,
);
chunks.addAll({workerNumber: chunk});
}
return chunks;
}
Your problem is that you are picking a fixed size for the slices first, even when the number of elements isn't a multiple of the slice count. You're lucky that it rounded down instead of up, otherwise you'd have gotten an index-out-of-range error (try your code with 17 elements and three groups).
First you should figure our what result you want. Then you can try coding that.
For something like 22 elements and four groups, you probably want two groups of 6 elements and two groups of 5 elements, not three groups of 6 and one of 4 (since you say +/-1 is OK, not +/- 2).
I would do something like:
/// Emits the integers from 0 to [elementCount] - 1 in [groupCount] grups.
///
/// The [elementCount] must be greater than zero.
/// The [groupCount] must be in the range 1..[elementCount],
/// meaning that each group will have at least one element, and
/// each element is in at least one group.
Iterable<List<int>> evenlySpreadGroups(int elementCount, int groupCount) sync* {
if (elementCount < 1) {
throw RangeError.range(elementCount, 1, null, "elementCount");
}
RangeError.checkValueInInterval(groupCount, 1, elementCount, "groupCount");
var list = <int>[];
var groupIndex = 1;
for (var i = 0; i < elementCount; i++) {
while (i * groupCount >= groupIndex * elementCount) {
yield list;
list = [];
groupIndex += 1;
}
list.add(i);
}
yield list;
}
(It's written to also work if you allow more groups than elements, any groupCount >= 1, you'll just get empty lists in the output which is just rarely useful).
The more solutions the better:
import 'package:lists/lists.dart';
void main() {
final maxPartSize1 = 5;
final data1 = genData(1, 16);
print('data: $data1');
final parts1 = split(data1, maxPartSize1);
print('parts by $maxPartSize1: $parts1');
print('=====');
final maxPartSize2 = 3;
final data2 = genData(2, 8);
print('data: $data2');
final parts2 = split(data2, maxPartSize2);
print('parts by $maxPartSize2: $parts2');
}
List<int> genData(int start, int length) {
return List<int>.generate(length, (i) => i + start);
}
Iterable<List<int>> split(List<int> data, int step) sync* {
final length = data.length;
for (final i in StepList(0, length - 1, step)) {
var i2 = i + step;
if (i2 > length) {
i2 = length;
}
yield data.sublist(i, i2);
}
}
Output:
data: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
parts by 5: ([1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16])
=====
data: [2, 3, 4, 5, 6, 7, 8, 9]
parts by 3: ([2, 3, 4], [5, 6, 7], [8, 9])
Another way:
void main() {
final maxWorkers1 = 8;
final datLen1 = 16;
final data1 = [1, 2, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16];
print('data: $data1');
final parts1 = split(data1, maxWorkers1);
print('$maxWorkers1 workers: $parts1');
print('=====');
final maxWorkers2 = 4;
final datLen2 = 11;
final data2 = genData(3, datLen2);
print('data: $data2');
final parts2 = split(data2, maxWorkers2);
print('$maxWorkers2 workers: $parts2');
print('=====');
final maxWorkers3 = 8;
final data3 = [7, 8, 3, 4];
print('data: $data3');
final parts3 = split(data3, maxWorkers3);
print('$maxWorkers3 workers: $parts3');
}
List<int> genData(int start, int length) {
return List<int>.generate(length, (i) => i + start);
}
Iterable<List<int>> split(List<int> data, int divider) sync* {
if (divider <= 0) {
throw RangeError.value(divider, 'divider', 'Must be greater than 0');
}
if (data.isEmpty) {
// Nothing to do
return;
}
final length = data.length;
divider = divider > length ? length : divider;
var partSize = length ~/ divider;
if (length != partSize * divider) {
partSize++;
}
for (var i = 0; i < divider; i++) {
final start = i * partSize;
if (start >= length) {
break;
}
var end = start + partSize;
if (end > length) {
end = length;
}
yield data.sublist(start, end);
}
}
Output:
data: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
3 workers: ([1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16])
=====
data: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
4 workers: ([3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13])
=====
data: [7, 8, 3, 4]
8 workers: ([7], [8], [3], [4])
I have an array of arrays and a matching array. Each array has unique id values.
MatchingArray = [1,2,3,4,5,6]
A1 = [1, 4, 6]
A2 = [2,3,5]
A3 = [1,5]
A4 = [4]
A5 = [1, 6]
Need to find "optimal matchings". An optimal matching is an array of subsets from A1-A5 with minimal length, which should have a maximum possible intersection with MatchingArray.
For this example there are 2 possible matchings with a maximum intersection: M1 = [[2,3,5], [1, 4, 6]] and M2 = [[1,5], [4], [1, 6]]. But M1.length < M2.length, so the algorithm should output M1.
You could use sets (or hashes, whatever the language calls them) to optimise the time efficiency.
Convert the target array to a set, and then subtract the selected source from it (i.e. removing common values). Keep doing this recursively until the target set is empty. Keep track of the best result (using the fewest source arrays as possible). Backtrack if the number of source arrays being used gets past the length of the best solution already found at that moment.
Here is the code in Python:
def find_optimal_coverage(target, sources):
max_size = len(target)
best = None
def recurse(target, sources, selected):
nonlocal max_size, best
if len(target) == 0:
best = selected
max_size = len(best) - 1
return True
if len(selected) == max_size:
return None
for i, source in enumerate(sources):
result = recurse(target - set(source), sources[i+1:],
selected + [list(source)])
if result:
return True
target = set(target) # convert to set for faster lookup
# limit the source lists to elements that occur in the target
sources = list(map(target.intersection, sources))
# limit target to elements that occur in at least one source
target = set.union(*sources)
# sort sources by decreasing length to maximise probability of
# finding optimal solution sooner
sources.sort(key = len, reverse = True)
if recurse(target, sources, []):
return best
result = find_optimal_coverage(
[1, 2, 3, 4, 5, 6, 8],
[
[1, 4, 6, 7],
[2, 3, 5],
[1, 5],
[4],
[1, 6]
]
)
print(result)
See it run on repl.it
In JavaScript:
function subtractArray(s, arr) {
return arr.reduce( (s, v) => (s.delete(v), s), new Set(s) );
}
function findOptimalCoverage(target, sources) {
var maxSize = target.size;
var best = null;
function recurse(target, sources, selected) {
if (target.size == 0) {
best = selected;
maxSize = best.length - 1;
return true;
}
if (selected.length == maxSize) return;
return sources.some( (source, i) =>
recurse(subtractArray(target, source), sources.slice(i+1),
selected.concat([source]))
);
}
target = new Set(target) // convert to set for faster lookup
// limit the source arrays to elements that occur in the target
sources = sources.map( source => source.filter(target.has.bind(target)));
// limit target to elements that occur in at least one source
target = new Set([].concat(...sources));
// sort sources by decreasing length to maximise probability of
// finding optimal solution sooner
sources.sort( (a,b) => b.length - a.length );
if (recurse(target, sources, [])) return best;
}
var result = findOptimalCoverage(
[1, 2, 3, 4, 5, 6, 8],
[
[1, 4, 6, 7],
[2, 3, 5],
[1, 5],
[4],
[1, 6]
]
);
console.log(result);
.as-console-wrapper { max-height: 100% !important; top: 0; }
Implemented algorithm in javascript:
var matchingArray = [1, 2, 3, 4, 5, 6];
var A1 = [1, 4, 6],
A2 = [2, 3, 5],
A3 = [1, 5],
A4 = [4],
A5 = [1, 6];
var M = [A1, A2, A3, A4, A5];
function compareArrays(M, machingArray) {
var intersections = []
M.forEach(function(A) {
var partOfItersections;
if (A.length > 0) {
var intersectionsCount = getIntersectionCount(A, machingArray);
partOfItersections = intersectionsCount / A.length;
} else {
partOfItersections = 0
}
intersections.push({
length: A.length,
partOfItersections: partOfItersections
});
});
//alert(JSON.stringify(intersections));
var maxLength = 0,
maxPartOfItersections = 0,
optimalArrays = [];
intersections.forEach(function(arrayData, index) {
var currentArr = M[index];
var currentArrLength = currentArr.length;
if (maxPartOfItersections < arrayData.partOfItersections) {
setCurrentOptimalArr(arrayData.partOfItersections, currentArr);
} else if (maxPartOfItersections === arrayData.partOfItersections) {
if (maxLength < currentArrLength) {
setCurrentOptimalArr(arrayData.partOfItersections, currentArr);
} else if (maxLength === currentArrLength) {
optimalArrays.push(currentArr);
}
}
});
//alert(JSON.stringify(optimalArrays));
return optimalArrays;
function setCurrentOptimalArr(intersectionsCount, currentArr) {
optimalArrays = [currentArr];
maxLength = currentArr.length;
maxPartOfItersections = intersectionsCount;
}
function getIntersectionCount(A, machingArray) {
var intersectionCount = 0;
A.forEach(function(elem) {
if (machingArray.indexOf(elem) != -1) {
intersectionCount++;
}
});
return intersectionCount;
}
}
alert(JSON.stringify(compareArrays(M, matchingArray)));
Count intersection of arrays separately.
Return arrays which contain more part of intersections.
Code updated
I had an interview were I was asked a seemingly simple algorithm question: "Write an algorithm to return me all possible winning combinations for tic tac toe." I still can't figure out an efficient way to handle this. Is there a standard algorithm or common that should be applied to similar questions like this that I'm not aware of?
This is one of those problems that's actually simple enough for brute force and, while you could use combinatorics, graph theory, or many other complex tools to solve it, I'd actually be impressed by applicants that recognise the fact there's an easier way (at least for this problem).
There are only 39, or 19,683 possible combinations of placing x, o or <blank> in the grid, and not all of those are valid.
First, a valid game position is one where the difference between x and o counts is no more than one, since they have to alternate moves.
In addition, it's impossible to have a state where both sides have three in a row, so they can be discounted as well. If both have three in a row, then one of them would have won in the previous move.
There's actually another limitation in that it's impossible for one side to have won in two different ways without a common cell (again, they would have won in a previous move), meaning that:
XXX
OOO
XXX
cannot be achieved, while:
XXX
OOX
OOX
can be. But we can actually ignore that since there's no way to win two ways without a common cell without having already violated the "maximum difference of one" rule, since you need six cells for that, with the opponent only having three.
So I would simply use brute force and, for each position where the difference is zero or one between the counts, check the eight winning possibilities for both sides. Assuming only one of them has a win, that's a legal, winning game.
Below is a proof of concept in Python, but first the output of time when run on the process sending output to /dev/null to show how fast it is:
real 0m0.169s
user 0m0.109s
sys 0m0.030s
The code:
def won(c, n):
if c[0] == n and c[1] == n and c[2] == n: return 1
if c[3] == n and c[4] == n and c[5] == n: return 1
if c[6] == n and c[7] == n and c[8] == n: return 1
if c[0] == n and c[3] == n and c[6] == n: return 1
if c[1] == n and c[4] == n and c[7] == n: return 1
if c[2] == n and c[5] == n and c[8] == n: return 1
if c[0] == n and c[4] == n and c[8] == n: return 1
if c[2] == n and c[4] == n and c[6] == n: return 1
return 0
pc = [' ', 'x', 'o']
c = [0] * 9
for c[0] in range (3):
for c[1] in range (3):
for c[2] in range (3):
for c[3] in range (3):
for c[4] in range (3):
for c[5] in range (3):
for c[6] in range (3):
for c[7] in range (3):
for c[8] in range (3):
countx = sum([1 for x in c if x == 1])
county = sum([1 for x in c if x == 2])
if abs(countx-county) < 2:
if won(c,1) + won(c,2) == 1:
print " %s | %s | %s" % (pc[c[0]],pc[c[1]],pc[c[2]])
print "---+---+---"
print " %s | %s | %s" % (pc[c[3]],pc[c[4]],pc[c[5]])
print "---+---+---"
print " %s | %s | %s" % (pc[c[6]],pc[c[7]],pc[c[8]])
print
As one commenter has pointed out, there is one more restriction. The winner for a given board cannot have less cells than the loser since that means the loser just moved, despite the fact the winner had already won on the last move.
I won't change the code to take that into account but it would be a simple matter of checking who has the most cells (the last person that moved) and ensuring the winning line belonged to them.
Another way could be to start with each of the eight winning positions,
xxx ---
--- xxx
--- --- ... etc.,
and recursively fill in all legal combinations (start with inserting 2 o's, then add an x for each o ; avoid o winning positions):
xxx xxx xxx
oo- oox oox
--- o-- oox ... etc.,
Today I had an interview with Apple and I had the same question. I couldn't think well at that moment. Later one on, before going to a meeting I wrote the function for the combinations in 15 minutes, and when I came back from the meeting I wrote the validation function again in 15 minutes. I get nervous at interviews, Apple not trusts my resume, they only trust what they see in the interview, I don't blame them, many companies are the same, I just say that something in this hiring process doesn't look quite smart.
Anyways, here is my solution in Swift 4, there are 8 lines of code for the combinations function and 17 lines of code to check a valid board.
Cheers!!!
// Not used yet: 0
// Used with x : 1
// Used with 0 : 2
// 8 lines code to get the next combination
func increment ( _ list: inout [Int], _ base: Int ) -> Bool {
for digit in 0..<list.count {
list[digit] += 1
if list[digit] < base { return true }
list[digit] = 0
}
return false
}
let incrementTicTacToe = { increment(&$0, 3) }
let win0_ = [0,1,2] // [1,1,1,0,0,0,0,0,0]
let win1_ = [3,4,5] // [0,0,0,1,1,1,0,0,0]
let win2_ = [6,7,8] // [0,0,0,0,0,0,1,1,1]
let win_0 = [0,3,6] // [1,0,0,1,0,0,1,0,0]
let win_1 = [1,4,7] // [0,1,0,0,1,0,0,1,0]
let win_2 = [2,5,8] // [0,0,1,0,0,1,0,0,1]
let win00 = [0,4,8] // [1,0,0,0,1,0,0,0,1]
let win11 = [2,4,6] // [0,0,1,0,1,0,1,0,0]
let winList = [ win0_, win1_, win2_, win_0, win_1, win_2, win00, win11]
// 16 lines to check a valid board, wihtout countin lines of comment.
func winCombination (_ tictactoe: [Int]) -> Bool {
var count = 0
for win in winList {
if tictactoe[win[0]] == tictactoe[win[1]],
tictactoe[win[1]] == tictactoe[win[2]],
tictactoe[win[2]] != 0 {
// If the combination exist increment count by 1.
count += 1
}
if count == 2 {
return false
}
}
var indexes = Array(repeating:0, count:3)
for num in tictactoe { indexes[num] += 1 }
// '0' and 'X' must be used the same times or with a diference of one.
// Must one and only one valid combination
return abs(indexes[1] - indexes[2]) <= 1 && count == 1
}
// Test
var listToIncrement = Array(repeating:0, count:9)
var combinationsCount = 1
var winCount = 0
while incrementTicTacToe(&listToIncrement) {
if winCombination(listToIncrement) == true {
winCount += 1
}
combinationsCount += 1
}
print("There is \(combinationsCount) combinations including possible and impossible ones.")
print("There is \(winCount) combinations for wining positions.")
/*
There are 19683 combinations including possible and impossible ones.
There are 2032 combinations for winning positions.
*/
listToIncrement = Array(repeating:0, count:9)
var listOfIncremented = ""
for _ in 0..<1000 { // Win combinations for the first 1000 combinations
_ = incrementTicTacToe(&listToIncrement)
if winCombination(listToIncrement) == true {
listOfIncremented += ", \(listToIncrement)"
}
}
print("List of combinations: \(listOfIncremented)")
/*
List of combinations: , [2, 2, 2, 1, 1, 0, 0, 0, 0], [1, 1, 1, 2, 2, 0, 0, 0, 0],
[2, 2, 2, 1, 0, 1, 0, 0, 0], [2, 2, 2, 0, 1, 1, 0, 0, 0], [2, 2, 0, 1, 1, 1, 0, 0, 0],
[2, 0, 2, 1, 1, 1, 0, 0, 0], [0, 2, 2, 1, 1, 1, 0, 0, 0], [1, 1, 1, 2, 0, 2, 0, 0, 0],
[1, 1, 1, 0, 2, 2, 0, 0, 0], [1, 1, 0, 2, 2, 2, 0, 0, 0], [1, 0, 1, 2, 2, 2, 0, 0, 0],
[0, 1, 1, 2, 2, 2, 0, 0, 0], [1, 2, 2, 1, 0, 0, 1, 0, 0], [2, 2, 2, 1, 0, 0, 1, 0, 0],
[2, 2, 1, 0, 1, 0, 1, 0, 0], [2, 2, 2, 0, 1, 0, 1, 0, 0], [2, 2, 2, 1, 1, 0, 1, 0, 0],
[2, 0, 1, 2, 1, 0, 1, 0, 0], [0, 2, 1, 2, 1, 0, 1, 0, 0], [2, 2, 1, 2, 1, 0, 1, 0, 0],
[1, 2, 0, 1, 2, 0, 1, 0, 0], [1, 0, 2, 1, 2, 0, 1, 0, 0], [1, 2, 2, 1, 2, 0, 1, 0, 0],
[2, 2, 2, 0, 0, 1, 1, 0, 0]
*/
This is a java equivalent code sample
package testit;
public class TicTacToe {
public static void main(String[] args) {
// TODO Auto-generated method stub
// 0 1 2
// 3 4 5
// 6 7 8
char[] pc = {' ' ,'o', 'x' };
char[] c = new char[9];
// initialize c
for (int i = 0; i < 9; i++)
c[i] = pc[0];
for (int i = 0; i < 3; i++) {
c[0] = pc[i];
for (int j = 0; j < 3; j++) {
c[1] = pc[j];
for (int k = 0; k < 3; k++) {
c[2] = pc[k];
for (int l = 0; l < 3; l++) {
c[3] = pc[l];
for (int m = 0; m < 3; m++) {
c[4] = pc[m];
for (int n = 0; n < 3; n++) {
c[5] = pc[n];
for (int o = 0; o < 3; o++) {
c[6] = pc[o];
for (int p = 0; p < 3; p++) {
c[7] = pc[p];
for (int q = 0; q < 3; q++) {
c[8] = pc[q];
int countx = 0;
int county = 0;
for(int r = 0 ; r<9 ; r++){
if(c[r] == 'x'){
countx = countx + 1;
}
else if(c[r] == 'o'){
county = county + 1;
}
}
if(Math.abs(countx - county) < 2){
if(won(c, pc[2])+won(c, pc[1]) == 1 ){
System.out.println(c[0] + " " + c[1] + " " + c[2]);
System.out.println(c[3] + " " + c[4] + " " + c[5]);
System.out.println(c[6] + " " + c[7] + " " + c[8]);
System.out.println("*******************************************");
}
}
}
}
}
}
}
}
}
}
}
}
public static int won(char[] c, char n) {
if ((c[0] == n) && (c[1] == n) && (c[2] == n))
return 1;
else if ((c[3] == n) && (c[4] == n) && (c[5] == n))
return 1;
else if ((c[6] == n) && (c[7] == n) && (c[8] == n))
return 1;
else if ((c[0] == n) && (c[3] == n) && (c[6] == n))
return 1;
else if ((c[1] == n) && (c[4] == n) && (c[7] == n))
return 1;
else if ((c[2] == n) && (c[5] == n) && (c[8] == n))
return 1;
else if ((c[0] == n) && (c[4] == n) && (c[8] == n))
return 1;
else if ((c[2] == n) && (c[4] == n) && (c[6] == n))
return 1;
else
return 0;
}
}
`
Below Solution generates all possible combinations using recursion
It has eliminated impossible combinations and returned 888 Combinations
Below is a working code Possible winning combinations of the TIC TAC TOE game
const players = ['X', 'O'];
let gameBoard = Array.from({ length: 9 });
const winningCombination = [
[ 0, 1, 2 ],
[ 3, 4, 5 ],
[ 6, 7, 8 ],
[ 0, 3, 6 ],
[ 1, 4, 7 ],
[ 2, 5, 8 ],
[ 0, 4, 8 ],
[ 2, 4, 6 ],
];
const isWinningCombination = (board)=> {
if((Math.abs(board.filter(a => a === players[0]).length -
board.filter(a => a === players[1]).length)) > 1) {
return false
}
let winningComb = 0;
players.forEach( player => {
winningCombination.forEach( combinations => {
if (combinations.every(combination => board[combination] === player )) {
winningComb++;
}
});
});
return winningComb === 1;
}
const getCombinations = (board) => {
let currentBoard = [...board];
const firstEmptySquare = board.indexOf(undefined)
if (firstEmptySquare === -1) {
return isWinningCombination(board) ? [board] : [];
} else {
return [...players, ''].reduce((prev, next) => {
currentBoard[firstEmptySquare] = next;
if(next !== '' && board.filter(a => a === next).length > (gameBoard.length / players.length)) {
return [...prev]
}
return [board, ...prev, ...getCombinations(currentBoard)]
}, [])
}
}
const startApp = () => {
let combination = getCombinations(gameBoard).filter(board =>
board.every(item => !(item === undefined)) && isWinningCombination(board)
)
printCombination(combination)
}
const printCombination = (combination)=> {
const ulElement = document.querySelector('.combinations');
combination.forEach(comb => {
let node = document.createElement("li");
let nodePre = document.createElement("pre");
let textnode = document.createTextNode(JSON.stringify(comb));
nodePre.appendChild(textnode);
node.appendChild(nodePre);
ulElement.appendChild(node);
})
}
startApp();
This discovers all possible combinations for tic tac toe (255,168) -- written in JavaScript using recursion. It is not optimized, but gets you what you need.
const [EMPTY, O, X] = [0, 4, 1]
let count = 0
let coordinate = [
EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY
]
function reducer(arr, sumOne, sumTwo = null) {
let func = arr.reduce((sum, a) => sum + a, 0)
if((func === sumOne) || (func === sumTwo)) return true
}
function checkResult() {
let [a1, a2, a3, b1, b2, b3, c1, c2, c3] = coordinate
if(reducer([a1,a2,a3], 3, 12)) return true
if(reducer([a1,b2,c3], 3, 12)) return true
if(reducer([b1,b2,b3], 3, 12)) return true
if(reducer([c1,c2,c3], 3, 12)) return true
if(reducer([a3,b2,c1], 3, 12)) return true
if(reducer([a1,b1,c1], 3, 12)) return true
if(reducer([a2,b2,c2], 3, 12)) return true
if(reducer([a3,b3,c3], 3, 12)) return true
if(reducer([a1,a2,a3,b1,b2,b3,c1,c2,c3], 21)) return true
return false
}
function nextPiece() {
let [countX, countO] = [0, 0]
for(let i = 0; i < coordinate.length; i++) {
if(coordinate[i] === X) countX++
if(coordinate[i] === O) countO++
}
return countX === countO ? X : O
}
function countGames() {
if (checkResult()) {
count++
}else {
for (let i = 0; i < 9; i++) {
if (coordinate[i] === EMPTY) {
coordinate[i] = nextPiece()
countGames()
coordinate[i] = EMPTY
}
}
}
}
countGames()
console.log(count)
I separated out the checkResult returns in case you want to output various win conditions.
Could be solved with brute force but keep in mind the corner cases like player2 can't move when player1 has won and vice versa. Also remember Difference between moves of player1 and player can't be greater than 1 and less than 0.
I have written code for validating whether provided combination is valid or not, might soon post on github.