Go worker tasks with queue using structure to channel - debugging

I was asked about finding a bug in some Go code and I am stumped as to what this obvious bug should be. I was asked the following:
What is wrong with this code? It’s incomplete, but the snippet should be enough to spot the bug. How would you fix it? What other improvements can you propose?
Tried different coding solutions to example and find the bug, but don't see an obvious bug in the code because I can get this code to work fine (depending on how I code for it). I told them that the code isn't waiting on the worker processes or checking that they're completing before closing the channel. I stated that the code is too abstract to say for sure and it depends on the goal of the code, but that it can be made to work fine (not that I'd code it that way, of course).
const nworkers = 5
type Task struct {
...
}
func worker(queue chan *Task) {
for task := range queue {
task.execute()
}
}
func main() {
tasks := getTasks()
queue := make(chan *Task, nworkers)
for i := 0; i < nworkers; i++ {
go worker(queue)
}
for i := 0; i < len(tasks); i++ {
queue <- tasks[i]
}
close(queue)
}
/*
Again, I had created some code to populate the missing code areas and
added wait to the workers and checks to ensure they completed, passing
the structure to the function call, added code to populate the struct
data and passed the data with queue <- &tasks[i] to reference (in how I
was doing it with one example) and so on. I literally can't see anything
obvious as per the bug in the code example if I fill in some blanks to
make it work).
*/
No specific expected output, just trying to locate this bug so I can learn from this question as I delve further into the Go language. Can anyone spot what should be an obvious bug and explain where/what the bug is?

Related

In goLang why are we creating the channel inside a for loop each time

I am trying to learn goLang by studying different examples online. in this one example it is a quiz test where a CSV file is given to the user with questions and answers, the timer fires if the user does not answer the Q in a given time. What I don’t understand in the code below why are we creating the answer channel in for loop each time for every different question. why can’t we define the timer outside the for loop and use that for every question isn’t that inefficient coding?
problemloop:
for i, p := range problems {
fmt.Printf("Problem #%d: %s = ", i+1, p.q)
answerCh := make(chan string)
go func() {
var answer string
fmt.Scanf("%s\n", &answer)
answerCh <- answer
}()
select {
case <-timer.C:
fmt.Println()
break problemloop
case answer := <-answerCh:
if answer == p.a {
correct++
}
}
}
In Go, creating channels is very cheap. It's a common idiom, therefore, to create an "answer channel" you pass to a goroutine. Goroutines can't just return a value to a caller the way a function can do. When the goroutine is done, it sends its answer/result to the channel. Receiving on this channel in the main (or some other consumer) goroutine serves as a sync point. And allows to do timeouts, like your example demonstrates.
I wouldn't worry about efficiency here unless you can prove with profiling that this is the hot path. It's likely that this code could have been written with a single channel, but it's hard to say looking at the small snippet you provided.

What happens when reading or writing concurrently without a mutex

In Go, a sync.Mutex or chan is used to prevent concurrent access of shared objects. However, in some cases I am just interested in the "latest" value of a variable or field of an object.
Or I like to write a value and do not care if another go-routine overwrites it later or has just overwritten it before.
Update: TLDR; Just don't do this. It is not safe. Read the answers, comments, and linked documents!
Update 2021: The Go memory model is going to be specified more thoroughly and there are three great articles by Russ Cox that will teach you more about the surprising effects of unsynchronized memory access. These articles summarize a lot of the below discussions and learnings.
Here are two variants good and bad of an example program, where both seem to produce "correct" output using the current Go runtime:
package main
import (
"flag"
"fmt"
"math/rand"
"time"
)
var bogus = flag.Bool("bogus", false, "use bogus code")
func pause() {
time.Sleep(time.Duration(rand.Uint32()%100) * time.Millisecond)
}
func bad() {
stop := time.After(100 * time.Millisecond)
var name string
// start some producers doing concurrent writes (DANGER!)
for i := 0; i < 10; i++ {
go func(i int) {
pause()
name = fmt.Sprintf("name = %d", i)
}(i)
}
// start consumer that shows the current value every 10ms
go func() {
tick := time.Tick(10 * time.Millisecond)
for {
select {
case <-stop:
return
case <-tick:
fmt.Println("read:", name)
}
}
}()
<-stop
}
func good() {
stop := time.After(100 * time.Millisecond)
names := make(chan string, 10)
// start some producers concurrently writing to a channel (GOOD!)
for i := 0; i < 10; i++ {
go func(i int) {
pause()
names <- fmt.Sprintf("name = %d", i)
}(i)
}
// start consumer that shows the current value every 10ms
go func() {
tick := time.Tick(10 * time.Millisecond)
var name string
for {
select {
case name = <-names:
case <-stop:
return
case <-tick:
fmt.Println("read:", name)
}
}
}()
<-stop
}
func main() {
flag.Parse()
if *bogus {
bad()
} else {
good()
}
}
The expected output is as follows:
...
read: name = 3
read: name = 3
read: name = 5
read: name = 4
...
Any combination of read: and read: name=[0-9] is correct output for this program. Receiving any other string as output would be an error.
When running this program with go run --race bogus.go it is safe.
However, go run --race bogus.go -bogus warns of the concurrent reads and writes.
For map types and when appending to slices I always need a mutex or a similar method of protection to avoid segfaults or unexpected behavior. However, reading and writing literals (atomic values) to variables or field values seems to be safe.
Question: Which Go data types can I safely read and safely write concurrently without a mutext and without producing segfaults and without reading garbage from memory?
Please explain why something is safe or unsafe in Go in your answer.
Update: I rewrote the example to better reflect the original code, where I had the the concurrent writes issue. The important leanings are already in the comments. I will accept an answer that summarizes these learnings with enough detail (esp. on the Go-runtime).
However, in some cases I am just interested in the latest value of a variable or field of an object.
Here is the fundamental problem: What does the word "latest" mean?
Suppoose that, mathematically speaking, we have a sequence of values Xi, with 0 <= i < N. Then obviously Xj is "later than" Xi if j > i. That's a nice simple definition of "latest" and is probably the one you want.
But when two separate CPUs within a single machine—including two goroutines in a Go program—are working at the same time, time itself loses meaning. We cannot say whether i < j, i == j, or i > j. So there is no correct definition for the word latest.
To solve this kind of problem, modern CPU hardware, and Go as a programming language, gives us certain synchronization primitives. If CPUs A and B execute memory fence instructions, or synchronization instructions, or use whatever other hardware provisions exist, the CPUs (and/or some external hardware) will insert whatever is required for the notion of "time" to regain its meaning. That is, if the CPU uses barrier instructions, we can say that a memory load or store that was executed before the barrier is a "before" and a memory load or store that is executed after the barrier is an "after".
(The actual implementation, in some modern hardware, consists of load and store buffers that can rearrange the order in which loads and stores go to memory. The barrier instruction either synchronizes the buffers, or places an actual barrier in them, so that loads and stores cannot move across the barrier. This particular concrete implementation gives an easy way to think about the problem, but isn't complete: you should think of time as simply not existing outside the hardware-provided synchronization, i.e., all loads from, and stores to, some location are happening simultaneously, rather than in some sequential order, except for these barriers.)
In any case, Go's sync package gives you a simple high level access method to these kinds of barriers. Compiled code that executes before a mutex Lock call really does complete before the lock function returns, and the code that executes after the call really does not start until after the lock function returns.
Go's channels provide the same kinds of before/after time guarantees.
Go's sync/atomic package provides much lower level guarantees. In general you should avoid this in favor of the higher level channel or sync.Mutex style guarantees. (Edit to add note: You could use sync/atomic's Pointer operations here, but not with the string type directly, as Go strings are actually implemented as a header containing two separate values: a pointer, and a length. You could solve this with another layer of indirection, by updating a pointer that points to the string object. But before you even consider doing that, you should benchmark the use of the language's preferred methods and verify that these are a problem, because code that works at the sync/atomic level is hard to write and hard to debug.)
Which Go data types can I safely read and safely write concurrently without a mutext and without producing segfaults and without reading garbage from memory?
None.
It really is that simple: You cannot, under no circumstance whatsoever, read and write concurrently to anything in Go.
(Btw: Your "correct" program is not correct, it is racy and even if you get rid of the race condition it would not deterministically produce the output.)
Why can't you use channels
package main
import (
"fmt"
"sync"
)
func main() {
var wg sync.WaitGroup // wait group to close channel
var buffer int = 1 // buffer of the channel
// channel to get the share data
cName := make(chan string, buffer)
for i := 0; i < 10; i++ {
wg.Add(1) // add to wait group
go func(i int) {
cName <- fmt.Sprintf("name = %d", i)
wg.Done() // decrease wait group.
}(i)
}
go func() {
wg.Wait() // wait of wait group to be 0
close(cName) // close the channel
}()
// process all the data
for n := range cName {
println("read:", n)
}
}
The above code returns the following output
read: name = 0
read: name = 5
read: name = 1
read: name = 2
read: name = 3
read: name = 4
read: name = 7
read: name = 6
read: name = 8
read: name = 9
https://play.golang.org/p/R4n9ssPMOeS
Article about channels

Attempting to acquire a lock with a deadline in golang?

How can one only attempt to acquire a mutex-like lock in go, either aborting immediately (like TryLock does in other implementations) or by observing some form of deadline (basically LockBefore)?
I can think of 2 situations right now where this would be greatly helpful and where I'm looking for some sort of solution. The first one is: a CPU-heavy service which receives latency sensitive requests (e.g. a web service). In this case you would want to do something like the RPCService example below. It is possible to implement it as a worker queue (with channels and stuff), but in that case it becomes more difficult to gauge and utilize all available CPU. It is also possible to just accept that by the time you acquire the lock your code may already be over deadline, but that is not ideal as it wastes some amount of resources and means we can't do things like a "degraded ad-hoc response".
/* Example 1: LockBefore() for latency sensitive code. */
func (s *RPCService) DoTheThing(ctx context.Context, ...) ... {
if s.someObj[req.Parameter].mtx.LockBefore(ctx.Deadline()) {
defer s.someObj[req.Parameter].mtx.Unlock()
... expensive computation based on internal state ...
} else {
return s.cheapCachedResponse[req.Parameter]
}
}
Another case is when you have a bunch of objects which should be touched, but which may be locked, and where touching them should complete within a certain amount of time (e.g. updating some stats). In this case you could also either use LockBefore() or some form of TryLock(), see the Stats example below.
/* Example 2: TryLock() for updating stats. */
func (s *StatsObject) updateObjStats(key, value interface{}) {
if s.someObj[key].TryLock() {
defer s.someObj[key].Unlock()
... update stats ...
... fill in s.cheapCachedResponse ...
}
}
func (s *StatsObject) UpdateStats() {
s.someObj.Range(s.updateObjStats)
}
For ease of use, let's assume that in the above case we're talking about the same s.someObj. Any object may be blocked by DoTheThing() operations for a long time, which means we would want to skip it in updateObjStats. Also, we would want to make sure that we return the cheap response in DoTheThing() in case we can't acquire a lock in time.
Unfortunately, sync.Mutex only and exclusively has the functions Lock() and Unlock(). There is no way to potentially acquire a lock. Is there some easy way to do this instead? Am I approaching this class of problems from an entirely wrong angle, and is there a different, more "go"ish way to solve them? Or will I have to implement my own Mutex library if I want to solve these? I am aware of issue 6123 which seems to suggest that there is no such thing and that the way I'm approaching these problems is entirely un-go-ish.
Use a channel with buffer size of one as mutex.
l := make(chan struct{}, 1)
Lock:
l <- struct{}{}
Unlock:
<-l
Try lock:
select {
case l <- struct{}{}:
// lock acquired
<-l
default:
// lock not acquired
}
Try with timeout:
select {
case l <- struct{}{}:
// lock acquired
<-l
case <-time.After(time.Minute):
// lock not acquired
}
I think you're asking several different things here:
Does this facility exist in the standard libray? No, it doesn't. You can probably find implementations elsewhere - this is possible to implement using the standard library (atomics, for example).
Why doesn't this facility exist in the standard library: the issue you mentioned in the question is one discussion. There are also several discussions on the go-nuts mailing list with several Go code developers contributing: link 1, link 2. And it's easy to find other discussions by googling.
How can I design my program such that I won't need this?
The answer to (3) is more nuanced and depends on your exact issue. Your question already says
It is possible to implement it as a worker queue (with channels and
stuff), but in that case it becomes more difficult to gauge and
utilize all available CPU
Without providing details on why it would be more difficult to utilize all CPUs, as opposed to checking for a mutex lock state.
In Go you usually want channels whenever the locking schemes become non-trivial. It shouldn't be slower, and it should be much more maintainable.
How about this package: https://github.com/viney-shih/go-lock . It use channel and semaphore (golang.org/x/sync/semaphore) to solve your problem.
go-lock implements TryLock, TryLockWithTimeout and TryLockWithContext functions in addition to Lock and Unlock. It provides flexibility to control the resources.
Examples:
package main
import (
"fmt"
"time"
"context"
lock "github.com/viney-shih/go-lock"
)
func main() {
casMut := lock.NewCASMutex()
casMut.Lock()
defer casMut.Unlock()
// TryLock without blocking
fmt.Println("Return", casMut.TryLock()) // Return false
// TryLockWithTimeout without blocking
fmt.Println("Return", casMut.TryLockWithTimeout(50*time.Millisecond)) // Return false
// TryLockWithContext without blocking
ctx, cancel := context.WithTimeout(context.Background(), 50*time.Millisecond)
defer cancel()
fmt.Println("Return", casMut.TryLockWithContext(ctx)) // Return false
// Output:
// Return false
// Return false
// Return false
}
PMutex from package https://github.com/myfantasy/mfs
PMutex implements RTryLock(ctx context.Context) and TryLock(ctx context.Context)
// ctx - some context
ctx := context.Background()
mx := mfs.PMutex{}
isLocked := mx.TryLock(ctx)
if isLocked {
// DO Something
mx.Unlock()
} else {
// DO Something else
}

Is it safe to hide sending to channel behind function call

I have a struct called Hub with a Run() method which is executed in its own goroutine. This method sequentially handles incoming messages. Messages arrive concurrently from multiple producers (separate goroutines). Of course I use a channel to accomplish this task. But now I want to hide the Hub behind an interface to be able to choose from its implementations. So, using a channel as a simple Hub's field isn't appropriate.
package main
import "fmt"
import "time"
type Hub struct {
msgs chan string
}
func (h *Hub) Run() {
for {
msg, hasMore := <- h.msgs
if !hasMore {
return
}
fmt.Println("hub: msg received", msg)
}
}
func (h *Hub) SendMsg(msg string) {
h.msgs <- msg
}
func send(h *Hub, prefix string) {
for i := 0; i < 5; i++ {
fmt.Println("main: sending msg")
h.SendMsg(fmt.Sprintf("%s %d", prefix, i))
}
}
func main() {
h := &Hub{make(chan string)}
go h.Run()
for i := 0; i < 10; i++ {
go send(h, fmt.Sprintf("msg sender #%d", i))
}
time.Sleep(time.Second)
}
So I've introduced Hub.SendMsg(msg string) function that just calls h.msgs <- msg and which I can add to the HubInterface. And as a Go-newbie I wonder, is it safe from the concurrency perspective? And if so - is it a common approach in Go?
Playground here.
Channel send semantics do not change when you move the send into a method. Andrew's answer points out that the channel needs to be created with make to send successfully, but that was always true, whether or not the send is inside a method.
If you are concerned about making sure callers can't accidentally wind up with invalid Hub instances with a nil channel, one approach is to make the struct type private (hub) and have a NewHub() function that returns a fully initialized hub wrapped in your interface type. Since the struct is private, code in other packages can't try to initialize it with an incomplete struct literal (or any struct literal).
That said, it's often possible to create invalid or nonsense values in Go and that's accepted: net.IP("HELLO THERE BOB") is valid syntax, or net.IP{}. So if you think it's better to expose your Hub type go ahead.
Easy answer
Yes
Better answer
No
Channels are great for emitting data from unknown go-routines. They do so safely, however I would recommend being careful with a few parts. In the listed example the channel is created with the construction of the struct by the consumer (and not not by a consumer).
Say the consumer creates the Hub like the following: &Hub{}. Perfectly valid... Apart from the fact that all the invokes of SendMsg() will block for forever. Luckily you placed those in their own go-routines. So you're still fine right? Wrong. You are now leaking go-routines. Seems fine... until you run this for a period of time. Go encourages you to have valid zero values. In this case &Hub{} is not valid.
Ensuring SendMsg() won't block could be achieved via a select{} however you then have to decide what to do when you encounter the default case (e.g. throw data away). The channel could block for more reasons than bad setup too. Say later you do more than simply print the data after reading from the channel. What if the read gets very slow, or blocks on IO. You then will start pushing back on the producers.
Ultimately, channels allow you to not think much about concurrency... However if this is something of high-throughput, then you have quite a bit to consider. If it is production code, then you need to understand that your API here involves SendMsg() blocking.

Golang anonymous function in loop - issues with values passed as arguments

I had read various pages such as https://github.com/golang/go/wiki/CommonMistakes which outlined the issues with using closures and goroutines in a loop. As such I wrote my original loops as follows:
for outstanding < threads {
ttl += 1;
outstanding += 1;
go func (ttl int, results chan Result) {
results <- pw.SendTTL(ttl, dest)
results <- pw.Recv(3)
}(ttl, results)
}
Passing the changing TTL as an argument to the anonymous function. I ended up getting a random assortment of values over the range. Say if I was expecting 1-5 I'd get a couple 1's, a couple 3's, maybe a 4.
So I tried the following, in case there was something about specifically using the variable instantiated by the loop. Yes I know I'm sort of abusing the for loop here...
for i := ttl; outstanding < threads; i++ {
go func (ttl int, results chan Result) {
results <- pw.SendTTL(ttl, dest)
results <- pw.Recv(3)
}(i, results)
outstanding++;
}
No joy. Same experience.
I also tried the other suggested option where you use a local variable in the loop, and use that within the closure. Same experience.
What am I doing wrong here? What boat did I miss?
In writing out the requested example I think I realized what my problem was. The various go routines were clobbering each others TTL settings when attempting to share the socket.
Question withdrawn ;)
Edit: To clarify, the right value was in fact being passed to the routines in either case. It was an underlying sharing of resources that was the problem.

Resources