How to calculate average key comparisons in a hashtable? - data-structures

Lets say i have a hash table with separate chaining.
It has keys: 1547, 2333, 6982, 3356, 1544
It has hash function of x mod 7.
hash table:
|1547|
| |
|2333|
|6982| -> |3356|
|1544|
Assuming each key i am searching for is successful, is it right of me to calculate the average key comparison like this below?:
If i am looking for a key that has not been collided (1547,2333,1544), it will only take one comparison. Thus, based on the hash table, i have 3 comparisons.
For 6982->3356, it takes 2 comparison.
Thus, on average, i have (3+2)/5 = 1 comparison.

Your arithmetic is slightly off: you're counting 3356 but forgetting 6982 (which is also a key).
The correct calculation is
(4*1 + 1*2) / 5 = 1.2

Related

Comparing numbers using a modular hash function?

I want to compare b base-b numbers of b digits each to determine which ones are the same, using a hash table. If I use a modular hash function, should I use h(a) = a mod (b) or h(a) = a mod (b-1)? I am not sure how to determine if these are suitable or not.
So you have b numbers in the range 0 ... b^b - 1 (e.g. 10 numbers in the range 0 ... 9999999999).
If you want to guarantee that the hash function is collision-free, you cannot use mod. If you use e.g. a mod 10, then 31 and 56465421 both get a hash of 1 and collide, and this happens for every mod below 10000000000.
So you can only reduce the probability of hash collisions. And the smallest mod value with a chance to avoid collisions is b (but most probably, you'll run into collisions then). Without doing proper probability computations, I'd go for something like mod b*b, effectively taking the two trailing digits.

Generating a perfect hash function given known list of strings?

Suppose I have a list of N strings, known at compile-time.
I want to generate (at compile-time) a function that will map each string to a distinct integer between 1 and N inclusive. The function should take very little time or space to execute.
For example, suppose my strings are:
{"apple", "orange", "banana"}
Such a function may return:
f("apple") -> 2
f("orange") -> 1
f("banana") -> 3
What's a strategy to generate this function?
I was thinking to analyze the strings at compile time and look for a couple of constants I could mod or add by or something?
The compile-time generation time/space can be quite expensive (but obviously not ridiculously so).
Say you have m distinct strings, and let ai, j be the jth character of the ith string. In the following, I'll assume that they all have the same length. This can be easily translated into any reasonable programming language by treating ai, j as the null character if j ≥ |ai|.
The idea I suggest is composed of two parts:
Find (at most) m - 1 positions differentiating the strings, and store these positions.
Create a perfect hash function by considering the strings as length-m vectors, and storing the parameters of the perfect hash function.
Obviously, in general, the hash function must check at least m - 1 positions. It's easy to see this by induction. For 2 strings, at least 1 character must be checked. Assume it's true for i strings: i - 1 positions must be checked. Create a new set of strings by appending 0 to the end of each of the i strings, and add a new string that is identical to one of the strings, except it has a 1 at the end.
Conversely, it's obvious that it's possible to find at most m - 1 positions sufficient for differentiating the strings (for some sets the number of course might be lower, as low as log to the base of the alphabet size of m). Again, it's easy to see so by induction. Two distinct strings must differ at some position. Placing the strings in a matrix with m rows, there must be some column where not all characters are the same. Partitioning the matrix into two or more parts, and applying the argument recursively to each part with more than 2 rows, shows this.
Say the m - 1 positions are p1, ..., pm - 1. In the following, recall the meaning above for ai, pj for pj ≥ |ai|: it is the null character.
let us define h(ai) = ∑j = 1m - 1[qj ai, pj % n], for random qj and some n. Then h is known to be a universal hash function: the probability of pair-collision P(x ≠ y ∧ h(x) = h(y)) ≤ 1/n.
Given a universal hash function, there are known constructions for creating a perfect hash function from it. Perhaps the simplest is creating a vector of size m2 and successively trying the above h with n = m2 with randomized coefficients, until there are no collisions. The number of attempts needed until this is achieved, is expected 2 and the probability that more attempts are needed, decreases exponentially.
It is simple. Make a dictionary and assign 1 to the first word, 2 to the second, ... No need to make things complicated, just number your words.
To make the lookup effective, use trie or binary search or whatever tool your language provides.

When building a hash table using linear probing for collision resolution, is the extra term always added to the hash or only when a collision occurs?

I'm building a table, where an attempt to insert a new key into the table when there is a collision follows the sequence { hash(x) + i, where i = 1,2,3, ... }. If I'm building a hash table using linear probing would my Insert() algorithm do something like this:
hashValue = hash(x)
while hashValue is taken in table
hashValue += 1
where I only add the increment value when there's a collision, or would I add the increment value to the hash right from the start when i = 1 , so something like this:
hashValue = hash(x) + 1
while hashValue is taken in table
hashValue += 1
As long as you do it consistently, it does not matter. The effect of adding one (or any other constant, for that matter) to hash code has no effect on the composition of the table, except that the bucket numbering would be "shifted off" by a constant "offset". Since bucket numbering is a private matter of your has table, nobody should care.
In essence, a linear probing hash function is
H(x, i) = (H(x) + i) % N
where N is the number of buckets. It is conventional to start i at zero, which means incrementing the value of hash only when you get a collision.
It does not hurt (it simply shifts the probe sequence by one element), but it doesn't have any benefits either, and conceptually it's a bit silly. That's why the canonical form starts at hash(x) and increments only when encountering collisions.

Lists Hash function

I'm trying to make a hash function so I can tell if too lists with same sizes contain the same elements.
For exemple this is what I want:
f((1 2 3))=f((1 3 2))=f((2 1 3))=f((2 3 1))=f((3 1 2))=f((3 2 1)).
Any ideea how can I approch this problem ? I've tried doing the sum of squares of all elements but it turned out that there are collisions,for exemple f((2 2 5))=33=f((1 4 4)) which is wrong as the lists are not the same.
I'm looking for a simple approach if there is any.
Sort the list and then:
list.each do |current_element|
hash = (37 * hash + current_element) % MAX_HASH_VALUE
end
You're probably out of luck if you really want no collisions. There are N choose k sets of size k with elements in 1..N (and worse, if you allow repeats). So imagine you have N=256, k=8, then N choose k is ~4 x 10^14. You'd need a very large integer to distinctly hash all of these sets.
Possibly you have N, k such that you could still make this work. Good luck.
If you allow occasional collisions, you have lots of options. From simple things like your suggestion (add squares of elements) and computing xor the elements, to complicated things like sort them, print them to a string, and compute MD5 on them. But since collisions are still possible, you have to verify any hash match by comparing the original lists (if you keep them sorted, this is easy).
So you are looking something provides these properties,
1. If h(x1) == y1, then there is an inverse function h_inverse(y1) == x1
2. Because the inverse function exists, there cannot be a value x2 such that x1 != x2, and h(x2) == y1.
Knuth's Multiplicative Method
In Knuth's "The Art of Computer Programming", section 6.4, a multiplicative hashing scheme is introduced as a way to write hash function. The key is multiplied by the golden ratio of 2^32 (2654435761) to produce a hash result.
hash(i)=i*2654435761 mod 2^32
Since 2654435761 and 2^32 has no common factors in common, the multiplication produces a complete mapping of the key to hash result with no overlap. This method works pretty well if the keys have small values. Bad hash results are produced if the keys vary in the upper bits. As is true in all multiplications, variations of upper digits do not influence the lower digits of the multiplication result.
Robert Jenkins' 96 bit Mix Function
Robert Jenkins has developed a hash function based on a sequence of subtraction, exclusive-or, and bit shift.
All the sources in this article are written as Java methods, where the operator '>>>' represents the concept of unsigned right shift. If the source were to be translated to C, then the Java 'int' data type should be replaced with C 'uint32_t' data type, and the Java 'long' data type should be replaced with C 'uint64_t' data type.
The following source is the mixing part of the hash function.
int mix(int a, int b, int c)
{
a=a-b; a=a-c; a=a^(c >>> 13);
b=b-c; b=b-a; b=b^(a << 8);
c=c-a; c=c-b; c=c^(b >>> 13);
a=a-b; a=a-c; a=a^(c >>> 12);
b=b-c; b=b-a; b=b^(a << 16);
c=c-a; c=c-b; c=c^(b >>> 5);
a=a-b; a=a-c; a=a^(c >>> 3);
b=b-c; b=b-a; b=b^(a << 10);
c=c-a; c=c-b; c=c^(b >>> 15);
return c;
}
You can read details from here
If all the elements are numbers and they have a maximum, this is not too complicated, you sort those elements and then you put them together one after the other in the base of your maximum+1.
Hard to describe in words...
For example, if your maximum is 9 (that makes it easy to understand), you'd have :
f(2 3 9 8) = f(3 8 9 2) = 2389
If you maximum was 99, you'd have :
f(16 2 76 8) = (0)2081676
In your example with 2,2 and 5, if you know you would never get anything higher than 5, you could "compose" the result in base 6, so that would be :
f(2 2 5) = 2*6^2 + 2*6 + 5 = 89
f(1 4 4) = 1*6^2 + 4*6 + 4 = 64
Combining hash values is hard, I've found this way (no explanation, though perhaps someone would recognize it) within Boost:
template <class T>
void hash_combine(size_t& seed, T const& v)
{
seed ^= hash_value(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
It should be fast since there is only shifting, additions and xor taking place (apart from the actual hashing).
However the requirement than the order of the list does not influence the end-result would mean that you first have to sort it which is an O(N log N) operation, so it may not fit.
Also, since it's impossible without more stringent boundaries to provide a collision free hash function, you'll still have to actually compare the sorted lists if ever the hash are equals...
I'm trying to make a hash function so I can tell if two lists with same sizes contain the same elements.
[...] but it turned out that there are collisions
These two sentences suggest you are using the wrong tool for the job. The point of a hash (unless it is a 'perfect hash', which doesn't seem appropriate to this problem) is not to guarantee equality, or to provide a unique output for every given input. In the general usual case, it cannot, because there are more potential inputs than potential outputs.
Whatever hash function you choose, your hashing system is always going to have to deal with the possibility of collisions. And while different hashes imply inequality, it does not follow that equal hashes imply equality.
As regards your actual problem: a start might be to sort the list in ascending order, then use the sorted values as if they were the prime powers in the prime decomposition of an integer. Reconstruct this integer (modulo the maximum hash value) and there is a hash value.
For example:
2 1 3
sorted becomes
1 2 3
Treating this as prime powers gives
2^1.3^2.5^3
which construct
2.9.125 = 2250
giving 2250 as your hash value, which will be the same hash value as for any other ordering of 1 2 3, and also different from the hash value for any other sequence of three numbers that do not overflow the maximum hash value when computed.
A naïve approach to solving your essential problem (comparing lists in an order-insensitive manner) is to convert all lists being compared to a set (set in Python or HashSet in Java). This is more effective than making a hash function since a perfect hash seems essential to your problem. For almost any other approach collisions are inevitable depending on input.

Good hash function for permutations?

I have got numbers in a specific range (usually from 0 to about 1000). An algorithm selects some numbers from this range (about 3 to 10 numbers). This selection is done quite often, and I need to check if a permutation of the chosen numbers has already been selected.
e.g one step selects [1, 10, 3, 18] and another one [10, 18, 3, 1] then the second selection can be discarded because it is a permutation.
I need to do this check very fast. Right now I put all arrays in a hashmap, and use a custom hash function: just sums up all the elements, so 1+10+3+18=32, and also 10+18+3+1=32. For equals I use a bitset to quickly check if elements are in both sets (I do not need sorting when using the bitset, but it only works when the range of numbers is known and not too big).
This works ok, but can generate lots of collisions, so the equals() method is called quite often. I was wondering if there is a faster way to check for permutations?
Are there any good hash functions for permutations?
UPDATE
I have done a little benchmark: generate all combinations of numbers in the range 0 to 6, and array length 1 to 9. There are 3003 possible permutations, and a good hash should generated close to this many different hashes (I use 32 bit numbers for the hash):
41 different hashes for just adding (so there are lots of collisions)
8 different hashes for XOR'ing values together
286 different hashes for multiplying
3003 different hashes for (R + 2e) and multiplying as abc has suggested (using 1779033703 for R)
So abc's hash can be calculated very fast and is a lot better than all the rest. Thanks!
PS: I do not want to sort the values when I do not have to, because this would get too slow.
One potential candidate might be this.
Fix a odd integer R.
For each element e you want to hash compute the factor (R + 2*e).
Then compute the product of all these factors.
Finally divide the product by 2 to get the hash.
The factor 2 in (R + 2e) guarantees that all factors are odd, hence avoiding
that the product will ever become 0. The division by 2 at the end is because
the product will always be odd, hence the division just removes a constant bit.
E.g. I choose R = 1779033703. This is an arbitrary choice, doing some experiments should show if a given R is good or bad. Assume your values are [1, 10, 3, 18].
The product (computed using 32-bit ints) is
(R + 2) * (R + 20) * (R + 6) * (R + 36) = 3376724311
Hence the hash would be
3376724311/2 = 1688362155.
Summing the elements is already one of the simplest things you could do. But I don't think it's a particularly good hash function w.r.t. pseudo randomness.
If you sort your arrays before storing them or computing hashes, every good hash function will do.
If it's about speed: Have you measured where the bottleneck is? If your hash function is giving you a lot of collisions and you have to spend most of the time comparing the arrays bit-by-bit the hash function is obviously not good at what it's supposed to do. Sorting + Better Hash might be the solution.
If I understand your question correctly you want to test equality between sets where the items are not ordered. This is precisely what a Bloom filter will do for you. At the expense of a small number of false positives (in which case you'll need to make a call to a brute-force set comparison) you'll be able to compare such sets by checking whether their Bloom filter hash is equal.
The algebraic reason why this holds is that the OR operation is commutative. This holds for other semirings, too.
depending if you have a lot of collisions (so the same hash but not a permutation), you might presort the arrays while hashing them. In that case you can do a more aggressive kind of hashing where you don't only add up the numbers but add some bitmagick to it as well to get quite different hashes.
This is only beneficial if you get loads of unwanted collisions because the hash you are doing now is too poor. If you hardly get any collisions, the method you are using seems fine
I would suggest this:
1. Check if the lengths of permutations are the same (if not - they are not equal)
Sort only 1 array. Instead of sorting another array iterate through the elements of the 1st array and search for the presence of each of them in the 2nd array (compare only while the elements in the 2nd array are smaller - do not iterate through the whole array).
note: if you can have the same numbers in your permutaions (e.g. [1,2,2,10]) then you will need to remove elements from the 2nd array when it matches a member from the 1st one.
pseudo-code:
if length(arr1) <> length(arr2) return false;
sort(arr2);
for i=1 to length(arr1) {
elem=arr1[i];
j=1;
while (j<=length(arr2) and elem<arr2[j]) j=j+1;
if elem <> arr2[j] return false;
}
return true;
the idea is that instead of sorting another array we can just try to match all of its elements in the sorted array.
You can probably reduce the collisions a lot by using the product as well as the sum of the terms.
1*10*3*18=540 and 10*18*3*1=540
so the sum-product hash would be [32,540]
you still need to do something about collisions when they do happen though
I like using string's default hash code (Java, C# not sure about other languages), it generates pretty unique hash codes.
so if you first sort the array, and then generates a unique string using some delimiter.
so you can do the following (Java):
int[] arr = selectRandomNumbers();
Arrays.sort(arr);
int hash = (arr[0] + "," + arr[1] + "," + arr[2] + "," + arr[3]).hashCode();
if performance is an issue, you can change the suggested inefficient string concatenation to use StringBuilder or String.format
String.format("{0},{1},{2},{3}", arr[0],arr[1],arr[2],arr[3]);
String hash code of course doesn't guarantee that two distinct strings have different hash, but considering this suggested formatting, collisions should be extremely rare

Resources