I have been doing printing job with Thermal Printer Image Printing on portable thermal printer for weeks and this is code I got for Image Printing.
public static byte[] GetByteImage(Bitmap bm, int BitmapWidth)
{
BitmapData data = GetGreyScaledBitmapData(bm, BitmapWidth);
BitArray dots = data.Dots;
string t = data.Width.ToString();
byte[] width = BitConverter.GetBytes(data.Width);
int offset = 0;
MemoryStream stream = new MemoryStream();
BinaryWriter bw = new BinaryWriter(stream);
//Line spacing
bw.Write((char)0x1B);
bw.Write('3');
bw.Write((byte)0);
while (offset < data.Height)
{
//Declare printer to print image mode
bw.Write((char)0x1B);
bw.Write('*');
bw.Write((byte)33);
bw.Write(width[0]);
bw.Write(width[1]);
for (int x = 0; x < data.Width; ++x)
{
for (int k = 0; k < 3; ++k)
{
byte slice = 0;
for (int b = 0; b < 8; ++b)
{
int y = (((offset / 8) + k) * 8) + b;
int i = (y * data.Width) + x;
bool v = false;
if (i < dots.Length)
{
v = dots[i];
}
slice |= (byte)((v ? 1 : 0) << (7 - b));
}
bw.Write(slice);
}
}
offset += 24;
bw.Write((char)0x0A);
}
bw.Write((char)0x1B);
bw.Write('3');
bw.Write((byte)0);
bw.Flush();
byte[] bytes = stream.ToArray();
return bytes;
}
public static BitmapData GetGreyScaledBitmapData(Bitmap bmpFileName, double imgsize)
{
using (var bitmap = (Bitmap)(bmpFileName))
{
var threshold = 127;
var index = 0;
double multiplier = imgsize;
double scale = (double)(multiplier / (double)bitmap.Width);
int xheight = (int)(bitmap.Height * scale);
int xwidth = (int)(bitmap.Width * scale);
var dimensions = xwidth * xheight;
var dots = new BitArray(dimensions);
for (var y = 0; y < xheight; y++)
{
for (var x = 0; x < xwidth; x++)
{
var _x = (int)(x / scale);
var _y = (int)(y / scale);
Android.Graphics.Color color = new Android.Graphics.Color(bitmap.GetPixel(_x, _y));
var luminance = (int)(color.R * 0.3 + color.G * 0.59 + color.B * 0.11);
dots[index] = (luminance < threshold);
index++;
}
}
return new BitmapData()
{
Dots = dots,
Height = (int)(bitmap.Height * scale),
Width = (int)(bitmap.Width * scale)
};
}
}
public class BitmapData
{
public BitArray Dots
{
get;
set;
}
public int Height
{
get;
set;
}
public int Width
{
get;
set;
}
}
The problem is, it print very slow and make jerking sound while printing.
Another problem is, the method of image converting to Grey Scale is a bit slow.
And when I test with other apps I found that they have no jerking sound and almost instantly print image after clicked print button.
Is there a way to improve above code so it can print smoothly ?
This is the app I tested Printer Lab - Thermal printer manager
The Thermal Printer I used RPP300 72mm Mobile Printer
The ESC * command you are using prints every 24 dots in height.
Then, as you feel the problem, it will be jerky and slow print.
Please use a combination of GS * and GS / commands to improve it.
Details of their specifications are described on pages 24 to 26 of the Thermal Mobile Printer Command Set Manual.
In Addition:
By the way, I was overlooking another command.
It would be easier for us to create the data that we will send.
However, smooth printing depends on the printer performance and communication line speed.
That command is GS v 0. It is described on pages 32 and 33 of the manual.
The program in this article is a bit image data conversion process for FS q and GS (L / GS 8 L commands, but it can also be used for GS * commands. Please try it.
Convert raster byte[] image data to column Format in C#
Finally got a solution. I was really dumb back then. Just ask your printer manufacturer company for SDK or find SDK from other printer manufacturer.
I've written an algorithm in Processing to do the following:
1. Instantiate a 94 x 2 int array
2. Load a jpg image of dimensions 500 x 500 pixels
3. Iterate over every pixel in the image and determine whether it is black or white then change a variable related to the array
4. Print the contents of the array
For some reason this algorithm freezes immediately. I've put print statements in that show me that it freezes before even attempting to load the image. This is especially confusing to me in light of the fact that I have written another very similar algorithm that executes without complications. The other algorithm reads an image, averages the color of each tile of whatever size is specified, and then prints rectangles over the region that was averaged with the average color, effectively pixelating the image. Both algorithms load an image and examine each of its pixels. The one in question is mostly different in that it doesn't draw anything. I was going to say that it was different for having an array but the pixelation algorithm holds all of the colors in a color array which should take up far more space than the int array.
From looking in my mac's console.app I see that there was originally this error: "java.lang.OutOfMemoryError: GC overhead limit exceeded". From other suggestions/sources on the web I tried bumping the memory allocation from 256mb to 4000mb (doing this felt meaningless because my analysis of the algorithms showed they should be the same complexity but I tried anyways). This did not stop freezing but changed the error to a combination of "JavaNativeFoundation error occurred obtaining Java exception description" and "java.lang.OutOfMemoryError: Java heap space".
Then I tried pointing processing to my local jdk with the hope of utilizing the 64 bit jdk over processing's built in 32 bit jdk. From within Processing.app/Contents I executed the following commands:
mv Java java-old
ln -s /Library/Java/JavaVirtualMachines/jdk1.7.0_79.jdk Java
Processing would not start after this attempt with the following error populating my console:
"com.apple.xpc.launchd[1]: (org.processing.app.160672[13559]) Service exited with abnormal code: 1"
Below is my code:
First the noncompliant algorithm
int squareSize=50;
int numRows = 10;
int numCols = 10;
PFont myFont;
PImage img;
//33-126
void setup(){
size(500,500);
count();
}
void count(){
ellipseMode(RADIUS);
int[][] asciiArea = new int[94][2];
println("hello?");
img=loadImage("countingPicture.jpg");
println("image loaded");
for(int i=0; i<(500/squareSize); i++){
for(int j=0; j<(500/squareSize); j++){
int currentValue=i+j*numCols;
if(currentValue+33>126){
break;
}
println(i+", "+j);
asciiArea[currentValue][0]=currentValue+33;
asciiArea[currentValue][1]=determineTextArea(i,j,squareSize);
//fill(color(255,0,0));
//ellipse(i*squareSize,j*squareSize,3,3);
}
}
println("done calculating");
displayArrayContents(asciiArea);
}
int determineTextArea(int i, int j, int squareSize){
int textArea = 0;
double n=0.0;
while(n < squareSize*squareSize){
n+=1.0;
int xOffset = (int)(n%((double)squareSize));
int yOffset = (int)(n/((double)squareSize));
color c = img.get(i*squareSize+xOffset, j*squareSize+yOffset);
if(red(c)!=255 || green(c)!=255 || blue(c)!=255){
println(red(c)+" "+green(c)+" "+blue(c));
textArea++;
}
}
return textArea;
}
void displayArrayContents(int[][] arr){
int i=0;
println("\n now arrays");
while(i<94){
println(arr[i][0]+" "+arr[i][1]);
}
}
The pixelation algorithm that works:
PImage img;
int direction = 1;
float signal;
int squareSize = 5;
int wideness = 500;
int highness = 420;
int xDimension = wideness/squareSize;
int yDimension= highness/squareSize;
void setup() {
size(1500, 420);
noFill();
stroke(255);
frameRate(30);
img = loadImage("imageIn.jpg");
color[][] colors = new color[xDimension][yDimension];
for(int drawingNo=0; drawingNo < 3; drawingNo++){
for(int i=0; i<xDimension; i++){
for(int j=0; j<yDimension; j++){
double average = 0;
double n=0.0;
while(n < squareSize*squareSize){
n+=1.0;
int xOffset = (int)(n%((double)squareSize));
int yOffset = (int)(n/((double)squareSize));
color c = img.get(i*squareSize+xOffset, j*squareSize+yOffset);
float cube = red(c)*red(c) + green(c)*green(c) + blue(c)*blue(c);
double grayValue = (int)(sqrt(cube)*(255.0/441.0));
double nAsDouble = (double)n;
average=(grayValue + (n-1.0)*average)/n;
average=(grayValue/n)+((n-1.0)/(n))*average;
}
//average=discretize(average);
println(i+" "+j+" "+average);
colors[i][j]=color((int)average);
fill(colors[i][j]);
if(drawingNo==0){ //stroke(colors[i][j]); }
stroke(210);}
if(drawingNo==1){ stroke(150); }
if(drawingNo==2){ stroke(90); }
//stroke(colors[i][j]);
rect(drawingNo*wideness+i*squareSize,j*squareSize,squareSize,squareSize);
}
}
}
save("imageOut.jpg");
}
You're entering an infinite loop, which makes the println() statements unreliable. Fix the infinite loop, and your print statements will work again.
Look at this while loop:
while(i<94){
println(arr[i][0]+" "+arr[i][1]);
}
When will i ever become >= 94?
You never increment i, so its value is always 0. You can prove this by adding a println() statement inside the while loop:
while(i<94){
println("i: " + i);
println(arr[i][0]+" "+arr[i][1]);
}
You probably wanted to increment i inside the while loop. Or just use a for loop instead.
I several a 32bit bitmap with Alpha channel.
I need to compose a new Bitmap that has again an alpha channel. So the final bitmap is later used with AlphaBlend.
There is no need for stretching. If there would be no alpha channel, I would just use BitBlt to create the new bitmap.
I am not using managed code, I just want to do this with standard GDI / WinAPI functions. Also I am interested in a solution that there is no need for some special libraries.
TIA
Note: I know that I can use several AphaBlend functions to do the same composition in the final output. But for the ease of use in my program I would prefer to compose such a bitmap once.
You can go through every pixel and compose them manually:
void ComposeBitmaps(BITMAP* bitmaps, int bitmapCount, BITMAP& outputBitmap)
{
for(int y=0; y<outputBitmap.bmHeight; ++y)
{
for(int x=0; x<outputBitmap.bmWidth; ++x)
{
int b = 0;
int g = 0;
int r = 0;
int a = 0;
for(int i=0; i<bitmapCount; ++i)
{
unsigned char* samplePtr = (unsigned char*)bitmaps[i].bmBits+(y*outputBitmap.bmWidth+x)*4;
b += samplePtr[0]*samplePtr[3];
g += samplePtr[1]*samplePtr[3];
r += samplePtr[2]*samplePtr[3];
a += samplePtr[3];
}
unsigned char* outputSamplePtr = (unsigned char*)outputBitmap.bmBits+(y*outputBitmap.bmWidth+x)*4;
if(a>0)
{
outputSamplePtr[0] = b/a;
outputSamplePtr[1] = g/a;
outputSamplePtr[2] = r/a;
outputSamplePtr[3] = a/bitmapCount;
}
else
outputSamplePtr[3] = 0;
}
}
(Assuming all bitmaps are 32-bit and have the same width and height)
Or, if you want to draw bitmaps one on top of another, rather than mix them in equal proportions:
unsigned char* outputSamplePtr = (unsigned char*)outputBitmap.bmBits+(y*outputBitmap.bmWidth+x)*4;
outputSamplePtr[3] = 0;
for(int i=0; i<bitmapCount; ++i)
{
unsigned char* samplePtr = (unsigned char*)bitmaps[i].bmBits+(y*outputBitmap.bmWidth+x)*4;
outputSamplePtr[0] = (outputSamplePtr[0]*outputSamplePtr[3]*(255-samplePtr[3])+samplePtr[0]*samplePtr[3]*255)/(255*255);
outputSamplePtr[1] = (outputSamplePtr[1]*outputSamplePtr[3]*(255-samplePtr[3])+samplePtr[1]*samplePtr[3]*255)/(255*255);
outputSamplePtr[2] = (outputSamplePtr[2]*outputSamplePtr[3]*(255-samplePtr[3])+samplePtr[2]*samplePtr[3]*255)/(255*255);
outputSamplePtr[3] = samplePtr[3]+outputSamplePtr[3]*(255-samplePtr[3])/255;
}
I found the following solution that fits best for me.
I Create a new target bitmap with CreateDIBSection
I prefill the new bitmap with fully transparent pixels. (FillMemory/ZeroMemory)
I Receive the Pixel that needs to be copied with GetDIBits. If possible form the width I directly copy the rows into the buffer I previously created. Otherwise I copy the data row by row into the buffer created in step.
The resulting bitmap can be used with AlphaBlend and in CImageList objects.
Because the bitmaps don't overlap I don't need take care about the target data.
Does anybody know how to find the local maxima in a grayscale IPL_DEPTH_8U image using OpenCV? HarrisCorner mentions something like that but I'm actually not interested in corners ...
Thanks!
A pixel is considered a local maximum if it is equal to the maximum value in a 'local' neighborhood. The function below captures this property in two lines of code.
To deal with pixels on 'plateaus' (value equal to their neighborhood) one can use the local minimum property, since plateaus pixels are equal to their local minimum. The rest of the code filters out those pixels.
void non_maxima_suppression(const cv::Mat& image, cv::Mat& mask, bool remove_plateaus) {
// find pixels that are equal to the local neighborhood not maximum (including 'plateaus')
cv::dilate(image, mask, cv::Mat());
cv::compare(image, mask, mask, cv::CMP_GE);
// optionally filter out pixels that are equal to the local minimum ('plateaus')
if (remove_plateaus) {
cv::Mat non_plateau_mask;
cv::erode(image, non_plateau_mask, cv::Mat());
cv::compare(image, non_plateau_mask, non_plateau_mask, cv::CMP_GT);
cv::bitwise_and(mask, non_plateau_mask, mask);
}
}
Here's a simple trick. The idea is to dilate with a kernel that contains a hole in the center. After the dilate operation, each pixel is replaced with the maximum of it's neighbors (using a 5 by 5 neighborhood in this example), excluding the original pixel.
Mat1b kernelLM(Size(5, 5), 1u);
kernelLM.at<uchar>(2, 2) = 0u;
Mat imageLM;
dilate(image, imageLM, kernelLM);
Mat1b localMaxima = (image > imageLM);
Actually after I posted the code above I wrote a better and very very faster one ..
The code above suffers even for a 640x480 picture..
I optimized it and now it is very very fast even for 1600x1200 pic.
Here is the code :
void localMaxima(cv::Mat src,cv::Mat &dst,int squareSize)
{
if (squareSize==0)
{
dst = src.clone();
return;
}
Mat m0;
dst = src.clone();
Point maxLoc(0,0);
//1.Be sure to have at least 3x3 for at least looking at 1 pixel close neighbours
// Also the window must be <odd>x<odd>
SANITYCHECK(squareSize,3,1);
int sqrCenter = (squareSize-1)/2;
//2.Create the localWindow mask to get things done faster
// When we find a local maxima we will multiply the subwindow with this MASK
// So that we will not search for those 0 values again and again
Mat localWindowMask = Mat::zeros(Size(squareSize,squareSize),CV_8U);//boolean
localWindowMask.at<unsigned char>(sqrCenter,sqrCenter)=1;
//3.Find the threshold value to threshold the image
//this function here returns the peak of histogram of picture
//the picture is a thresholded picture it will have a lot of zero values in it
//so that the second boolean variable says :
// (boolean) ? "return peak even if it is at 0" : "return peak discarding 0"
int thrshld = maxUsedValInHistogramData(dst,false);
threshold(dst,m0,thrshld,1,THRESH_BINARY);
//4.Now delete all thresholded values from picture
dst = dst.mul(m0);
//put the src in the middle of the big array
for (int row=sqrCenter;row<dst.size().height-sqrCenter;row++)
for (int col=sqrCenter;col<dst.size().width-sqrCenter;col++)
{
//1.if the value is zero it can not be a local maxima
if (dst.at<unsigned char>(row,col)==0)
continue;
//2.the value at (row,col) is not 0 so it can be a local maxima point
m0 = dst.colRange(col-sqrCenter,col+sqrCenter+1).rowRange(row-sqrCenter,row+sqrCenter+1);
minMaxLoc(m0,NULL,NULL,NULL,&maxLoc);
//if the maximum location of this subWindow is at center
//it means we found the local maxima
//so we should delete the surrounding values which lies in the subWindow area
//hence we will not try to find if a point is at localMaxima when already found a neighbour was
if ((maxLoc.x==sqrCenter)&&(maxLoc.y==sqrCenter))
{
m0 = m0.mul(localWindowMask);
//we can skip the values that we already made 0 by the above function
col+=sqrCenter;
}
}
}
The following listing is a function similar to Matlab's "imregionalmax". It looks for at most nLocMax local maxima above threshold, where the found local maxima are at least minDistBtwLocMax pixels apart. It returns the actual number of local maxima found. Notice that it uses OpenCV's minMaxLoc to find global maxima. It is "opencv-self-contained" except for the (easy to implement) function vdist, which computes the (euclidian) distance between points (r,c) and (row,col).
input is one-channel CV_32F matrix, and locations is nLocMax (rows) by 2 (columns) CV_32S matrix.
int imregionalmax(Mat input, int nLocMax, float threshold, float minDistBtwLocMax, Mat locations)
{
Mat scratch = input.clone();
int nFoundLocMax = 0;
for (int i = 0; i < nLocMax; i++) {
Point location;
double maxVal;
minMaxLoc(scratch, NULL, &maxVal, NULL, &location);
if (maxVal > threshold) {
nFoundLocMax += 1;
int row = location.y;
int col = location.x;
locations.at<int>(i,0) = row;
locations.at<int>(i,1) = col;
int r0 = (row-minDistBtwLocMax > -1 ? row-minDistBtwLocMax : 0);
int r1 = (row+minDistBtwLocMax < scratch.rows ? row+minDistBtwLocMax : scratch.rows-1);
int c0 = (col-minDistBtwLocMax > -1 ? col-minDistBtwLocMax : 0);
int c1 = (col+minDistBtwLocMax < scratch.cols ? col+minDistBtwLocMax : scratch.cols-1);
for (int r = r0; r <= r1; r++) {
for (int c = c0; c <= c1; c++) {
if (vdist(Point2DMake(r, c),Point2DMake(row, col)) <= minDistBtwLocMax) {
scratch.at<float>(r,c) = 0.0;
}
}
}
} else {
break;
}
}
return nFoundLocMax;
}
The first question to answer would be what is "local" in your opinion. The answer may well be a square window (say 3x3 or 5x5) or circular window of a certain radius. You can then scan over the entire image with the window centered at each pixel and pick the highest value in the window.
See this for how to access pixel values in OpenCV.
This is very fast method. It stored founded maxima in a vector of
Points.
vector <Point> GetLocalMaxima(const cv::Mat Src,int MatchingSize, int Threshold, int GaussKernel )
{
vector <Point> vMaxLoc(0);
if ((MatchingSize % 2 == 0) || (GaussKernel % 2 == 0)) // MatchingSize and GaussKernel have to be "odd" and > 0
{
return vMaxLoc;
}
vMaxLoc.reserve(100); // Reserve place for fast access
Mat ProcessImg = Src.clone();
int W = Src.cols;
int H = Src.rows;
int SearchWidth = W - MatchingSize;
int SearchHeight = H - MatchingSize;
int MatchingSquareCenter = MatchingSize/2;
if(GaussKernel > 1) // If You need a smoothing
{
GaussianBlur(ProcessImg,ProcessImg,Size(GaussKernel,GaussKernel),0,0,4);
}
uchar* pProcess = (uchar *) ProcessImg.data; // The pointer to image Data
int Shift = MatchingSquareCenter * ( W + 1);
int k = 0;
for(int y=0; y < SearchHeight; ++y)
{
int m = k + Shift;
for(int x=0;x < SearchWidth ; ++x)
{
if (pProcess[m++] >= Threshold)
{
Point LocMax;
Mat mROI(ProcessImg, Rect(x,y,MatchingSize,MatchingSize));
minMaxLoc(mROI,NULL,NULL,NULL,&LocMax);
if (LocMax.x == MatchingSquareCenter && LocMax.y == MatchingSquareCenter)
{
vMaxLoc.push_back(Point( x+LocMax.x,y + LocMax.y ));
// imshow("W1",mROI);cvWaitKey(0); //For gebug
}
}
}
k += W;
}
return vMaxLoc;
}
Found a simple solution.
In this example, if you are trying to find 2 results of a matchTemplate function with a minimum distance from each other.
cv::Mat result;
matchTemplate(search, target, result, CV_TM_SQDIFF_NORMED);
float score1;
cv::Point displacement1 = MinMax(result, score1);
cv::circle(result, cv::Point(displacement1.x+result.cols/2 , displacement1.y+result.rows/2), 10, cv::Scalar(0), CV_FILLED, 8, 0);
float score2;
cv::Point displacement2 = MinMax(result, score2);
where
cv::Point MinMax(cv::Mat &result, float &score)
{
double minVal, maxVal;
cv::Point minLoc, maxLoc, matchLoc;
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
matchLoc.x = minLoc.x - result.cols/2;
matchLoc.y = minLoc.y - result.rows/2;
return minVal;
}
The process is:
Find global Minimum using minMaxLoc
Draw a filled white circle around global minimum using min distance between minima as radius
Find another minimum
The the scores can be compared to each other to determine, for example, the certainty of the match,
To find more than just the global minimum and maximum try using this function from skimage:
http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max
You can parameterize the minimum distance between peaks, too. And more. To find minima, use negated values (take care of the array type though, 255-image could do the trick).
You can go over each pixel and test if it is a local maxima. Here is how I would do it.
The input is assumed to be type CV_32FC1
#include <vector>//std::vector
#include <algorithm>//std::sort
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/core.hpp"
//structure for maximal values including position
struct SRegionalMaxPoint
{
SRegionalMaxPoint():
values(-FLT_MAX),
row(-1),
col(-1)
{}
float values;
int row;
int col;
//ascending order
bool operator()(const SRegionalMaxPoint& a, const SRegionalMaxPoint& b)
{
return a.values < b.values;
}
};
//checks if pixel is local max
bool isRegionalMax(const float* im_ptr, const int& cols )
{
float center = *im_ptr;
bool is_regional_max = true;
im_ptr -= (cols + 1);
for (int ii = 0; ii < 3; ++ii, im_ptr+= (cols-3))
{
for (int jj = 0; jj < 3; ++jj, im_ptr++)
{
if (ii != 1 || jj != 1)
{
is_regional_max &= (center > *im_ptr);
}
}
}
return is_regional_max;
}
void imregionalmax(
const cv::Mat& input,
std::vector<SRegionalMaxPoint>& buffer)
{
//find local max - top maxima
static const int margin = 1;
const int rows = input.rows;
const int cols = input.cols;
for (int i = margin; i < rows - margin; ++i)
{
const float* im_ptr = input.ptr<float>(i, margin);
for (int j = margin; j < cols - margin; ++j, im_ptr++)
{
//Check if pixel is local maximum
if ( isRegionalMax(im_ptr, cols ) )
{
cv::Rect roi = cv::Rect(j - margin, i - margin, 3, 3);
cv::Mat subMat = input(roi);
float val = *im_ptr;
//replace smallest value in buffer
if ( val > buffer[0].values )
{
buffer[0].values = val;
buffer[0].row = i;
buffer[0].col = j;
std::sort(buffer.begin(), buffer.end(), SRegionalMaxPoint());
}
}
}
}
}
For testing the code you can try this:
cv::Mat temp = cv::Mat::zeros(15, 15, CV_32FC1);
temp.at<float>(7, 7) = 1;
temp.at<float>(3, 5) = 6;
temp.at<float>(8, 10) = 4;
temp.at<float>(11, 13) = 7;
temp.at<float>(10, 3) = 8;
temp.at<float>(7, 13) = 3;
vector<SRegionalMaxPoint> buffer_(5);
imregionalmax(temp, buffer_);
cv::Mat debug;
cv::cvtColor(temp, debug, cv::COLOR_GRAY2BGR);
for (auto it = buffer_.begin(); it != buffer_.end(); ++it)
{
circle(debug, cv::Point(it->col, it->row), 1, cv::Scalar(0, 255, 0));
}
This solution does not take plateaus into account so it is not exactly the same as matlab's imregionalmax()
I think you want to use the
MinMaxLoc(arr, mask=NULL)-> (minVal, maxVal, minLoc, maxLoc)
Finds global minimum and maximum in array or subarray
function on you image
This is some of my bitmask code (monochrome bitmaps). There is no problem with the Bitmask_Create() function. I have tested it with opening, loading and saving windows monochrome bitmaps, and it works great. However, the GetPixel and SetPixel functions I've made don't seem to work right. In some instances they seem to work fine depending on the bitmap dimensions.
If anyone could help, I would appreciate it. It's driving me insane.
Thanks.
typedef struct _GL_BITMASK GL_BITMASK;
struct _GL_BITMASK {
int nWidth; // Width in pixels
int nHeight; // Height in pixels
int nPitch; // Width of scanline in bytes (may have extra padding to align to DWORD)
BYTE *pData; // Pointer to the first byte of the first scanline (top down)
};
int BitMask_GetPixel(GL_BITMASK *pBitMask, int x, int y)
{
INT nElement = ((y * pBitMask->nPitch) + (x / 8));
PBYTE pElement = pBitMask->pData + nElement;
BYTE bMask = 1 << (7 - (x % 8));
return *pElement & bMask;
}
void BitMask_SetPixel(GL_BITMASK *pBitMask, int x, int y, int nPixelColor)
{
INT nElement = x / 8;
INT nScanLineOffset = y * pBitMask->nPitch;
PBYTE pElement = pBitMask->pData + nScanLineOffset + nElement;
BYTE bMask = 1 << (7 - (x % 8));
if(*pElement & bMask)
{
if(!nPixelColor) return;
else *pElement ^= bMask;
}
else
{
if(nPixelColor) return;
else *pElement |= bMask;
}
}
GL_BITMASK *BitMask_Create(INT nWidth, INT nHeight)
{
GL_BITMASK *pBitMask;
int nPitch;
nPitch = ((nWidth / 8) + 3) & ~3;
pBitMask = (GL_BITMASK *)GlobalAlloc(GMEM_FIXED, (nPitch * nHeight) + sizeof(GL_BITMASK));
if(!pBitMask)
return (GL_BITMASK *)NULL;
pBitMask->nPitch = nPitch;
pBitMask->nWidth = nWidth;
pBitMask->nHeight = nHeight;
pBitMask->pData = (PBYTE)pBitMask + sizeof(GL_BITMASK);
return pBitMask;
}
I think your formula for calculating pitch is just a little bit off. It works when the width is a multiple of 8, but not otherwise. Try:
nPitch = ((nWidth + 31) / 8) & ~3;
I figured it out... I had the two tests backwards for nPixelColor in SetPixel()
if(*pElement & bMask)
{
if(nPixelColor) return; // this was !nPixelColor
else *pElement ^= bMask;
}
else
{
if(!nPixelColor) return; // this was nPixelColor
else *pElement |= bMask;
}